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SUMMARY

Overtraining syndrome is a form of burnout,
defined in endurance athletes by unexplained per-
formance drop associated with intense fatigue
sensation. Our working hypothesis is that the
form of fatigue resulting from physical training
overload might share some neural underpinnings
with the form of fatigue observed after prolonged
intellectual work, which was previously shown to
affect the cognitive control brain system. Indeed,
cognitive control may be required to prevent any
impulsive behavior, including stopping physical
effort when it hurts, despite the long-term goal of
improving performance through intense training.
To test this hypothesis, we induced a mild form
of overtraining in a group of endurance athletes,
which we compared to a group of normally trained
athletes on behavioral tasks performed during fMRI
scanning. At the behavioral level, training overload
enhanced impulsivity in economic choice, which
was captured by a bias favoring immediate over
delayed rewards in our computational model. At
the neural level, training overload resulted in dimin-
ished activation of the lateral prefrontal cortex, a
key region of the cognitive control system, during
economic choice. Our results therefore provide
causal evidence for a functional link between
enduring physical exercise and exerting cognitive
control. Besides, the concept of cognitive control
fatigue bridges the functional consequences of
excessive physical training and intellectual work
into a single neuro-computational mechanism,
which might contribute to other clinical forms of
burnout syndromes.
Current
INTRODUCTION

A few decades ago, a marathon superstar at the peak of his

career suddenly stopped running for several years, citing mental

and physical exhaustion, in the absence of apparent injury. This

extreme state of fatigue is at the heart of the so-called overtrain-

ing syndrome, a form of burnout that strikes athletes in various

types of endurance sport. Beyond subjective fatigue, the over-

training syndrome is objectively characterized by a decrease in

performance that persists beyond substantial rest period [1]. It

may also be accompanied by cardiac and endocrine modifica-

tions, as well as symptoms shared with depression, such as

apathy, irritability, restlessness, insomnia, or loss of appetite

[2]. As the underlying mechanisms remain unknown, the over-

training syndrome represents a major issue for both athletes

and coaches and a potential cause of doping practice.

Here, we suggest a neural mechanism that might underlie the

effects of excessive physical training. More specifically, our idea

is that training overload induces fatigue in the cognitive control

brain system. Cognitive control is needed whenever habitual

processes must be monitored, interrupted, and modified so as

to better align the behavior to long-term goals [3, 4]. Maintaining

physical effort for the sake of fitness, when aversive signals, such

as aching muscles, call for stopping, should therefore require

cognitive control. This assumption is difficult to test directly, as

it would require monitoring cognitive control during real-life

endurance exercise. However, we reasoned that testing the sig-

natures of a putative fatigue in the cognitive control brain system

might be feasible.

Indeed, we demonstrated in a previous fMRI study [5] that the

cognitive control system is susceptible to fatigue when

engaged for a time as long as a workday. The demonstration

involved interleaving cognitive tasks meant to induce fatigue

and choice tasks meant to reveal fatigue. This procedure bor-

rowed from sequential task paradigms that have been widely

used to assess resource depletion theories [6, 7]. Cognitive

control fatigue was revealed by two markers recorded during

inter-temporal decisions (choices between immediate and
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Figure 1. Training Procedures

Participants (37 male triathletes in total) were

divided into two groups, following slightly different

training procedures. The loads assigned to the

different training phases correspond to variations

in daily exercise duration (in proportion to subject-

specific standard), and exercise intensity was kept

constant. The critical manipulation is the 40% in-

crease in training load during the 3 weeks of phase

III in the overreaching (OR), but not in the control

(CTL), group. The other phases were identical in

both groups, with a 2-week baseline phase of

usual training at the beginning and two tapering

phases (recovery periods) before and after the

critical phase III. Themaximal power output (MPO)

was evaluated on rest days before and after

phase III, as well as after phase IV (as indicated

by cyclist icons). The fMRI experiment (indicated

by brain icon) was conducted on the day

following post-phase III MPO measurement (see

details in Figure 2).
larger-later monetary rewards). We observed, (1) at the neural

level, a decreased excitability of the lateral prefrontal cortex

(LPFC) specifically during choice tasks and, (2) at the behavioral

level, an increased preference for immediate rewards in choice

tasks.

Importantly, these markers were observed in the absence of

any alteration in brain activity or behavioral performance during

cognitive tasks. This is consistent with the idea of cognitive con-

trol fatigue, corresponding to an increase in the cost of mobi-

lizing the lateral prefrontal cortex, by opposition to a cognitive

control deficit, as seen in patients with damage to the prefrontal

cortex. In other words, our notion of cognitive control fatigue

implies that cognitive control abilities are not lost but exerted

with more parsimony. Thus, they are still mobilized in cognitive

tasks where performance has to be maintained, but not neces-

sarily in choice tasks framed as mere expression of subjective

preference.

Here, we use the label ‘‘cognitive control fatigue’’ for the

collection of neural and behavioral signatures previously

observed following excessive cognitive work. If physical training

overload also leads to cognitive control fatigue, then overtrained

athletes should exhibit the same neural and behavioral markers.

The presence of these markers would provide evidence that

physical exercise over long periods might impact cognitive con-

trol and change temporal preferences. This may be important for

cognitive neuroscience in a context where failed replications

have casted serious doubt on whether control capacity can be

reduced by its utilization at short timescales [8, 9]. For the gen-

eral public, these signatures of cognitive control fatigue would

document the neural adverse effects of pushing too far the de-

mand on physical fitness.

We tested these predictions in a mild case of overtraining,

called overreaching (OR), because inducing a full-blown over-

training syndrome would be obviously unethical. This state can

be considered as a preliminary step in the pathway to overtrain-

ing, which usually vanishes in a week or two if training load is

drastically reduced. OR is characterized regarding physical ex-

ercise by a decreased maximal power output (MPO) and an

increased rating of perceived exertion (RPE), associated in
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everyday life with enhanced fatigue sensation but no depres-

sion-like symptoms [10, 11].

To explore the effects of OR, we recruited 37 competitive

male endurance athletes (mean age around 35 years). Partici-

pants were assigned to either the control group with normal

training (n = 18) or to the group with training overload (n =

19), in a pseudo-random manner that ensured matching of

age and performance level. Their training program (Figure 1)

was supervised during a total of 9 weeks by the Insep (French

Institute for Sport Performance). The overload concerned a

period of 3 weeks (denoted phase III in Figure 1), during which

the duration of each training session was increased by 40% on

average. The general structure of running, cycling, and swim-

ming sessions was maintained as usual. Physical performance

was monitored during cycling exercises performed on rest

days (pre, post, and taper in Figure 1), and subjective fatigue

was assessed using a psychometric questionnaire [12] every

2 days.

RESULTS

The effects of training overload on physical performance and

effort sensation were assessed during cycling tests that were

conducted on the 2 days following phase III.

On day 1, participants completed on a cycle ergometer an ex-

ercise protocol designed to determine their post MPO, which

was compared to the pre MPO measured before the start of

training phase III. MPO corresponds to the maximal workload

(in watts) that participants could sustain when physiological

measures reached exhaustion criteria.

On day 2, participants came to the MRI center for two scan-

ning sessions, separated by a 45-min cycling trial, during which

participants were instructed to give their best performance, i.e.,

to cover a maximal distance (Figure 2). The aim of including such

an intense physical effort was to disentangle the effects of acute

(45-min) exercise from long-term (3-week) overload. It also

served to test for an interaction between exercise and OR, which

would occur if OR athletesweremore fatigable (even by short ex-

ercises) than control (CTL) athletes. Finally, it served to measure



Figure 2. fMRI Experiment Procedures

Tasks are illustrated at different timescales from

bottom to top. Participants performed two ses-

sions of behavioral tasks in the MRI scanner,

before and after cycling (45-min time trial at

maximal speed). Sessions were divided into six

7-min runs, each including five blocks of cognitive

tasks (N-back or N-switch) intermingled with inter-

temporal choices (ICs). Cognitive tasks were

3-back (3-B) and 12-switch (12-S) in the hard

condition (for a total of 8 blocks, in red) versus

1-back (1-B) and 1-switch (1-S) in the easy con-

dition (for a total of 4 blocks, in blue). The first three

runs of a session implemented one cognitive task

(N-back or N-switch) and the last three runs the

other one. In each block, a series of 16–32

different letters was presented on screen, each

starting a new trial. The task to be performed was

instructed at the beginning of the block. In N-back

tasks, participants indicated whether the current

letter was the same as the one presented N trials

before (irrespective of case and color). In N-switch

tasks, participants categorized the current letter

as either vowel versus consonant or upper versus

lower case, depending on its color. In this case, N designates the number of switches (color changes) during the block. At the end of the block, participants made

three self-paced choices (with a 5-s limit) between immediate and delayed monetary rewards.
perceived exertion, which was rated by participants every 5 min

during the cycling time trial on a visual analog scale [13].

The behavioral and neural markers of cognitive control fatigue

were tested on day 2 during fMRI scanning sessions (Figure 2).

The behavioral marker was preference for immediate rewards,

relative to bigger-later rewards, in inter-temporal choices. Before

scanning, participants performed a calibration session where

choice options were progressively adjusted, following a bisec-

tion procedure, in order to find subject-specific indifference

points. During scanning sessions, inter-temporal choice task tri-

als were tailored around subject-specific indifference points so

their difficulty was matched across subjects. The neural marker

was LPFC activity during choice trials compared to baseline.

Choice trials were intermingled with cognitive task trials (either

N-back or N-switch), on which participants had been trained un-

til passing a threshold of 90%correct responses. Therewere two

reasons for incorporating cognitive tasks. The first reason was

that we needed an independent contrast to isolate cognitive

control regions, which was provided by the difference between

hard and easy versions of the tasks (change in N). The second

reason was that we intended to test the specificity of fatigue ef-

fects on choices, which we observed in our previous study [5].

Indeed, fatigue left unaffected brain activity recorded during per-

formance of cognitive tasks. The idea is that compensatory

mechanisms may be recruited to maintain performance, in tasks

where there is an objective correct response (N-back and

N-switch), but not in tasks where the response is an expression

of subjective preference (inter-temporal choice).

Overreaching Effects on Cycling Exercise
As predicted, MPO was significantly reduced by training over-

load (Figure 3A, left), but not by normal training (OR group,

DMPO = �13.26 ± 2.88 W, t18 = �4.61, p = 0.00022; CTL group,

DMPO = 3.60 ± 2.74 W, t17 = 1.2, p = 0.25), with a significant dif-

ference in training effect (DMPO) between groups (F1,32 = 16.3;
p = 0.00031). Training overload also had the expected impact

on perceived exertion (Figure 3A, right), which was higher in

OR relative to CTL participants (OR, RPE = 15.59 ± 0.16; CTL,

RPE = 14.74 ± 0.29; OR versus CTL, t34 = 2.56, p = 0.014). Alto-

gether, results from cycling exercises confirmed that training

overload was effective: it decreased physical performance while

increasing effort sensation.

Note that, in theOR group,MPOmeasured after the last phase

(taper) was even higher than in the pre baseline (DMPO = 7.68 ±

3.67 W; t18 = 2.15; p = 0.046). Thus, athletes fully recovered their

physical capacity after training overload, showing that our

manipulation was harmless in the end.

Overreaching Effects on Psychometric Questionnaire
The OR state induced by training overload measures were

corroborated by psychometric questionnaires (Brunel mood

scale) that participants filled every 2 days (Figure 3B). Note

that baseline fatigue level (at the start of the training program)

wasmatched between groups. The increase in subjective fatigue

between the beginning and the end of phase III was higher in OR

relative to CTL participants (OR, Dfatigue = 3.78 ± 0.98; CTL,

Dfatigue = 0.21 ± 0.74; OR versus CTL, F1,30 = 6.89, p =

0.014), whereas there was no difference in the evolution of

depression score (F1,30 = 0.72; p = 0.4).

Overreaching Effects on Behavioral Task Performance
Bayesian model selection indicated that, for both groups, the

best account of choices made during calibration was provided

by exponential discounting of reward with delay plus an additive

parameter, termed immediacy bias (IB), which captures the pref-

erence for immediate options, irrespective of reward and delay

(Table 1).

When comparing between groups the proportion of impulsive

choice made during the calibration procedure, we observed a

marginally significant difference, with a higher proportion of
Current Biology 29, 3289–3297, October 7, 2019 3291



Figure 3. Behavioral Validation of Over-

reaching Effects

(A) Results of cycling tests conducted after phase

III (see Figure 1). Graphs show the change in MPO

(left) measured during the incremental cycling test

on day 1 and how ratings of perceived exertion

(RPEs) (right) vary during the cycling time trial on

day 2 separately for the CTL (green) and OR

(purple) groups.

(B) Results of fatigue psychometric assessment.

Graphs show the change in fatigue score (ex-

tracted from Brunel mood scale) observed be-

tween the beginning and the end of phase III (see

Figure 1).

(C) Results of temporal discounting calibration.

Graphs show the posterior mean of immediacy

bias, a parameter integrated in the choice model

to account for preference between present and

future, irrespective of rewards and delays. Plain

and dotted lines as well as the shadowed area in

between illustrate mean and confidence intervals

of the immediacy bias observed in a larger, inde-

pendent cohort of healthy volunteers (n = 106).

See also Figure S3. Error bars and shaded

areas correspond to intersubject SEM. *p < 0.05;

**p < 0.01; ***p < 0.001.
impulsive choice following training overload (OR, Pim = 0.46 ±

0.026; CTL, = 0.38 ± 0.031; difference, OR versus CTL, t35 =

�1.99, p = 0.054). Note that such model-free comparison is

limited because choices were progressively adjusted to indiffer-

ence points through our adaptive design. We thus compared

fitted parameters (posterior means) between groups and

observed a specific difference in the immediacy bias (Figure 3C),

which—in line with our key behavioral prediction—was higher

following training overload (OR, IB = 0.4 ± 0.21; CTL, IB =

�0.34 ± 0.16; OR versus CTL, t35 = �2.77, p = 0.0089).

All the other parameters (Table 2), as well as the quality of fit

(Figure 4, left), were similar in the two groups. This suggests

that training overload increased the attraction of immediate re-

wards, but not the way option values were estimated and

compared. In particular, the weight assigned to delay (discount

factor) and the stochasticity of choices (temperature parameter)

were not significantly affected by training overload.

However, such a difference in the immediacy bias between

groups might come from a sampling issue (the CTL group being

by chancemore patient than the global population and/or the OR

group being more impulsive than the global population). To

address this question, we included as a reference a third inde-

pendent control group of participants (n = 106), who were tested

with similar calibration procedures for other purposes. Across all

CTL participants, we conducted permutation tests (1,000,000 it-

erations) to estimate the exact probability of observing by

chance a bias parameter of at least the same mean, with a sam-

ple of the same size, as that of the OR group. This permutation

procedure gave us a p value of 0.025. We therefore conclude

that the observed bias parameter was unlikely to reflect a sam-

pling issue and more likely to represent a true effect of training

overload.

During scanning sessions, we observed no significant differ-

ence between groups in cognitive task performance. We illus-

trate this absence of effect using correct response rate pooled
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across tasks (Figure 5A), but similar null results were obtained

when analyzing tasks separately, comparing response time

instead of accuracy, or focusing on switch cost. However, we

observed a trend for a remaining specific group difference in

the immediacy bias (OR versus CTL, F1,35 = 3.99; p = 0.054),

despite the adjustment of choice options following calibration

(Figure 4). Regarding our secondary question, namely the effects

of acute exercise, we found no significant difference between

scanning sessions, neither in cognitive task performance nor in

inter-temporal choices, and no interaction between session

and group (Table S1). Thus, 45 min of cycling, although athletes

approached physical exhaustion, was insufficient to affect

cognitive control or to interact with the state of cognitive control

fatigue.

Overreaching Effects on Neural Activity
To investigate the neural underpinnings of fatigue effect on

choice impulsivity, we isolated the cognitive control network us-

ing the conjunction between choice-related activity (against

baseline) and the difference in difficulty (hard minus easy tasks),

as was done in our previous study [5]. The logic of this analysis

was to locate brain regions that are normally involved in both

cognitive control and inter-temporal choice (in the CTL group).

These regions would be candidate for mediating the impact of

cognitive control fatigue on choice impulsivity, as they would

be both responsive to cognitive control demand and recruited

during inter-temporal decision-making. Thus, activity level ex-

tracted from these regions served as a reference to assess the

effects of training overload. As expected [5, 14–20], we observed

significant conjunction in a bilateral prefronto-parietal network

(Figure 5B; Table S2), including the middle frontal gyrus (MFG)

and the inferior parietal lobule (IPL).

We focused on the left MFG cluster, as it perfectly overlapped

with the unique brain region that was found in the previous study

[5] to both activate in the conjunction analysis and deactivate



Table 1. Results of Bayesian Model Comparison

PðIRÞ = 1

1+ eX
X =

1

b

�
DR

1+ kD
� IR

�
X =

1

b
½DRe�kD � IR� X =

1

b

�
DR

1+ kD
� IR

�
� bias X =

1

b
½DRe�kD � IR� � bias

Calibration EF 0.086 (0.013/0.022) 0.22 (0.12/0.21) 0.13 (0.032/0.15) 0.57 (0.83/0.41)

EP 0 0.0037 (0/0.89) 0 0.00020 (0/0.03) 0.99 (0.99/0.95)

fMRI sessions EF 0.076 (0.12/0.014) 0.072 (0.014/0.013) 0.17 (0.014/0.29) 0.68 (0.85/0.68)

EP 0 (0.003/0) 0 0 (0/0.032) 1 (1/0.97)

The four models combine two discounting functions (hyperbolic versus exponential) and two possibilities for inclusion of an immediacy bias (present or

absent) in the softmax choice function (STAR Methods). IR and DR are immediate and delayed reward magnitudes, and D is delay. b, k, and bias are

free parameters (choice stochasticity, discount factor, and immediacy bias, respectively). The comparison was based on choices made by the two

groups of participants taken together, separately for the calibration and fMRI sessions. EF is expected frequency and EP exceedance probability, pro-

vided for all participants and for each group separately (CTL/OR).
during choices in relation with behavioral fatigue effects. Neural

activity was extracted using a general linear model that

controlled for task factors, such as delay, reward level, eventual

choice, and response time (STAR Methods). Choice-related ac-

tivity (but not task-related activity) in the independent left MFG

cluster (defined from previous study) was significantly reduced

following training overload (OR, b = 0.15 ± 0.50; CTL, b =

1.86 ± 0.43; OR versus CTL, F1,35 = 6.36, p = 0.016). As seen

with behavioral variables, there was no effect of acute exercise

(no main effect of session and no interaction; Table S3) on neural

activity. The difference between groups in choice-related left

MFG activity was not observed in other clusters, such as the

left IPL or the rightMFG (Figure S1; Table S4). Also, left MFG acti-

vation with the difficulty of cognitive tasks was not different be-

tween groups (Figure 5C; Table S3). Moreover, the interaction

between task and group was significant, indicating that training

overload mainly impacted choice-related activity (CTL, Db =

1.35 ± 0.43; OR, Db = �0.20 ± 0.48; CTL versus OR, F1,35 =

5.81, p = 0.021).

Thus, training overload effects were predominant in the left

MFG cluster and during the inter-temporal choice task. The

fact that left MFG activity was independent from reward and

delay levels (Figure S2) suggests that training overload did not

affect temporal discounting. This is consistent with the compu-

tational modeling analysis showing an effect on the immediacy

bias, but not on the discount factor. We did not find any in-

crease in choice neural activity in the OR group compared to

the CTL group, even at a very liberal threshold (p < 0.05 at the

voxel level; extent threshold of 4 voxels at the cluster level),

even with a lower spatial smoothing that would be more sensi-

tive to activity in small subcortical regions, such as the ventral

striatum.

In addition, choice-related left MFG activity was correlated

across participants with the immediacy bias estimated during

scanning sessions in the OR group (r = �0.36; t17 = �4.32; p =

0.0005). Although the coefficient should be interpreted with

caution, due to the small sample size [21, 22], this significant cor-

relation establishes a link between the neural and behavioral

markers of cognitive control fatigue (Figure S3). Note that the

left MFG region of interest (ROI) was selected from the previous

study, by conjunction between control- and choice-related ac-

tivities, to avoid non-independence issues. Moreover, this corre-

lation is independent from the difference between groups, as it is

restricted to the OR group. It shows that athletes who exhibited
lower activity in left MFG during decision-making had a stronger

bias in favor of immediate over delayed rewards.

DISCUSSION

Our findings indicate that physical training overload reduces the

excitability of left MFG and the capacity to resist temptation of

immediate reward in inter-temporal choice. These conclusions

rely on significant differences between overtrained and normally

trained groups of athletes, in both brain activity and behavioral

performance, during choice tasks. There were trends for interac-

tions between groups and sessions, in the sense that overtrained

athletes were more fatigued after a 1-h cycling exercise, but

these trends were not significant. The association of neural

and behavioral differences between groups was corroborated

by an independent correlation, observed within the overtrained

group, between reduced left MFG activity and enhanced imme-

diacy bias. Although this correlation does establish a link be-

tween neural and behavioral effects of overtraining, it does not

imply that the neural effects were mediating the behavioral ef-

fects. Unfortunately, we could not apply here the kind of media-

tion analysis conducted in our previous study [5], because the

consequences of overtraining were assessed between partici-

pants and because we did not get baseline impulsivity measure-

ment (prior to training). The absence of baseline measurement is

a potential limitation to the conclusions, but comparison to other

datasets in healthy volunteers ensured that the difference was

due to overtrained athletes beingmore impulsive than the normal

population.

The difference in choice impulsivity was best captured by the

additive bias in the exponential discounting model [23]. Interest-

ingly, the two parameters of this ðbdÞ model were previously

mapped onto opponent brain systems involved in the valuation

of immediate versus delayed reward. These opponent systems

therefore had opposite influences on choice, with a more

‘‘future-oriented’’ system, including the lateral prefrontal cortex,

and a more ‘‘present-oriented’’ system, including the ventral

striatum. Interpreted in such a framework, increased choice

impulsivity in overtrained athletes would correspond to a less

active future-oriented system (decrease in left MFG activity)

rather than a more active present-oriented system (no increase

in ventral striatum activity). Indeed, we did not observe any brain

region that would have been more active in overtrained athletes

during economic choice.
Current Biology 29, 3289–3297, October 7, 2019 3293



Table 2. Comparison of Model Parameter Estimates and Quality of Fit for Choices Made during Calibration Session

Parameter CTL OR Difference t Value df p Value

Immediacy bias �0.34 ± 0.16 0.40 ± 0.21 �0.74 �2.77 35 0.0089

Discount factor 0.045 ± 0.0083 0.040 ± 0.0075 0.0050 0.45 35 0.66

Choice stochasticity 8.11 ± 0.55 9.23 ± 0.54 �1.12 �1.45 35 0.15

Balanced accuracy 0.70 ± 0.019 0.70 ± 0.011 0 �0.0003 35 0.99

Models were fitted on the calibration session, separately for the control (CTL) and overreaching (OR) groups. Parameters from top to bottom are de-

noted bias, k, and b in themodels (Table 1). Balanced accuracy is the percentage of choices correctly predicted by themodel, calculated separately for

impulsive and patient choices before averaging. Note that balanced accuracy is low because options were adjusted to indifference points. Results are

given as intersubject means ± SEs. Groups were compared using two-sample two-tailed t tests. df, degree of freedom.
We previously suggested the notion of cognitive control fa-

tigue as a label for the two choice-related markers (increased

impulsivity with decreased MFG activity) observed in the

absence of any change in behavioral performance or brain activ-

ity during cognitive tasks. As all neural and behavioral markers

were present in the overtrained group, we conclude that physical

training overload can also induce cognitive control fatigue. This

notion of cognitive control fatigue is different from physical fa-

tigue, because it can be induced by purely intellectual work [5].

It is also different from stress or sleep deprivation, which failed

to influence inter-temporal choices in previous experiments

[24, 25]. Cognitive control fatigue should also be distinguished

from loss of motivation, because it does not affect the arbitrage

between reward and delay, as shown by computational

modeling of choice behavior, and because it impacts activity in

a brain region (left MFG) that was not sensitive to reward. Finally,

cognitive control fatigue does not imply that the choice process

itself is impaired, as would be reflected by a higher stochasticity,

but rather that preference is shifted in favor of immediate reward.

This new concept of cognitive control fatigue should be con-

trasted to existing theories of ‘‘limited willpower’’ or ‘‘resource

depletion.’’ These theories postulate that exerting self-control

may deplete a common limited resource and consequently

affect performance in any subsequent task that also involves

self-control [6, 7]. However, the timescale typically envisaged

in resource depletion theories is that of minutes (e.g., [26]).

Meta-analyses and multi-lab replication attempts have seriously

questioned that depletion effects can be obtained in sequential

task paradigms at such short timescale [8, 9]. Consistently, we

observed here no effect of 45-min cycling on working memory,

task switching, choice impulsivity, or brain activity. These results

therefore suggest that exerting cognitive control might indeed

affect subsequent recruitment of cognitive control but at a time-

scale that ismuch longer than usually considered (here, 3weeks).

We nonetheless acknowledge that our participants were well-

trained endurance athletes who had exceptional recovery ca-

pacity and highly competitive spirit. It remains possible that

recreational cyclists would have shown earlier fatigue effects,

as suggested by a previous study investigating interactions be-

tween acute exercise and cognitive abilities [27].

Theories assuming that a resource is depleted by self-control

have not identified what the resource may be at the biological

level [28]. Blood glucose has been proposed as a suitable candi-

date resource, with some supporting evidence initially [6, 29].

However, the beneficial effects of glucose ingestion have been

hard to replicate [30, 31], and it was later suggested that they

might be more psychological than biological [32, 33]. In our
3294 Current Biology 29, 3289–3297, October 7, 2019
study, glucose is unlikely to have played a role because partici-

pants had free access to food and drinks during both training and

experiment days. Instead, we suggest a specific neural basis for

our concept of cognitive control fatigue, with a precise anatom-

ical location, in the left MFG. It is remarkable that such different

tasks—training for triathlon and making inter-temporal choice—

precisely interfered in a single brain region. Indeed, other regions

of the parieto-prefrontal cognitive control network recruited by

inter-temporal choices did not show any fatigue effect. It is the

same MFG region that mediated the increase in choice impul-

sivity induced by prolonged workingmemory and task-switching

performance [5] and the sameMFG region on which transcranial

magnetic stimulation (TMS) induced a present bias in inter-tem-

poral choice [16, 34]. Our findings therefore concur to designate

the left MFG as the weak spot of the brain cognitive control sys-

tem, being susceptible to fatigue.

Yet our data are silent about why the MFG is harder to acti-

vate with fatigue. This may not necessarily come from a local

dysfunction of MFG neurons. Indeed, MFG activity could be

downregulated by other brain systems for adaptive reasons,

possibly because exerting cognitive control would exhaust

some energetic supply or accumulate some metabolic wastes.

It has been suggested, for instance, that stopping cognitive

control exertion might avoid the accumulation of amyloid-b

peptide and allow its clearance during rest or sleep, such

that neural cells remain functional [35]. More generally, cogni-

tive control fatigue might have origins in any of the numerous

physiological changes that have been reported following

excessive sport exercise. One interesting (but still debated)

possibility is the release of inflammatory cytokines [36, 37],

which are known to affect motivational processes [38, 39].

Yet the mechanisms through which peripheral physiological

changes would affect specific prefrontal cortex functions

remain to be explored.

Alternatively, downregulation could be adaptive at a func-

tional rather than biological level, for instance to avoid opportu-

nity costs [40, 41], i.e., to avoid losing the benefits of using

cognitive control resources for other purposes. Yet the latter

hypothesis would imply that the opportunity cost of cognitive

control increases with time on task, which seems quite an arbi-

trary assumption. Further studies are thus required to under-

stand why the MFG is susceptible to fatigue, whereas other

brain regions, such as the visual cortex, can work all day long

without any behavioral consequence. In any case, the impact

of fatigue can be construed as an increase in the cost of recruit-

ing the MFG and thus exerting control. The implication is that

control resources can still be mobilized in a state of fatigue



Figure 4. Psychometric Functions and Model Fits

Graphs show observed choice rate (dots with error bars) and modeled choice probability (lines with shaded areas) for immediate rewards (IRs), as a function of

modeled relative values (difference between subjective values of immediate and delayed rewards). Error bars and shaded areas represent intersubjects SE. OR

and CTL groups are shown in purple and green, respectively. Left, middle, and right panels correspond to calibration (A), first fMRI (B), and second fMRI (C)

sessions, respectively.
but for higher benefits. This would explain why performance

was maintained during cognitive tasks, in which a precise finan-

cial payoff was associated to every correct response. By

contrast, the benefit of making a sound decision in inter-tempo-

ral choice might have been too elusive to recruit cognitive con-

trol. Such a view is consistent with suggestions that the effects

of time on task on cognitive performance and related brain ac-

tivity are not robust [42, 43] and that the consequences of

mental fatigue are better conceived as shifts in cost-benefit ar-

bitrages [44, 45].

The consequence of impulsive economic choice could itself

be deemed adaptive if immediate rewards were instrumental to

eliminate fatigue, as glucose is for reducing hunger. Yet in our

paradigm, it remains unclear how a small amount ofmoney could

be used to improve OR symptoms, so we consider as a bias the

shift observed in favor of immediate rewards. Another slightly
The MFG cluster overlaps with the unique brain region (shown in red) from the sa

study [5]. The sagittal section (bottom) corresponds to the blue line on the glass br

across subjects. The x, y, z coordinates refer to the MNI space (see also Table S

(C) Neural activity extracted from the MFG cluster. Graphs show regression esti

during inter-temporal choices with respect to baseline (top) and for neural acti

versions (bottom; see also Table S3). Error bars correspond to intersubject SEM. B

to fMRI sessions conducted before and after cycling exercise, respectively.

See also Figures S1–S3 and Tables S1–S4.
different perspective could be that fatigue places subjects in a

state of need, pushing them to seek immediate rewards in order

to restore their mood or some overarching hedonic variable,

which they monitor on the long run. This hedonic regulation is

reminiscent of the spontaneous oscillations between pursuing

‘‘have to’’ versus ‘‘want to’’ goals [46] and may be the basis of

the trade-off betweenwork and leisure that is at the heart of labor

theory [47].

In conclusion, our findings provide the first demonstration

that physical training overload induces some fatigue in the

cognitive control brain system, associated with more impulsive

economic decisions. They suggest a neural mechanism that

might explain not only why overtrained athletes fail to overcome

pain or fatigue signals but also why they are at risk of doping,

which may help with immediate performance but compromise

long-term achievements. They could also account for the rise
Figure 5. Neural Underpinnings of Over-

reaching Effects

(A) Behavior observed during fMRI. Top graphs

show the immediacy bias (posterior mean of

model parameter fitted on inter-temporal choices)

and bottom graphs the cognitive control perfor-

mance (correct response rate in hard versions

divided by correct response rate in easy versions

of cognitive control tasks) separately for the CTL

(green) andOR (purple) groups (see also Table S1).

(B) Whole-brain fMRI activity. Statistical maps

show the conjunction between choice-related

activity (against baseline) and effect of difficulty

(hard versus easy version of cognitive tasks) in the

CTL group. Significant activation (voxelwise

threshold, p < 0.001 uncorrected; clusterwise

threshold, p < 0.05 FWE corrected) was observed

in a dorsal parieto-prefrontal network, including

the middle frontal gyrus (MFG), the pre-central

gyrus (PCG), and the inferior parietal lobule (IPL).

me conjunction that was susceptible to cognitive control fatigue in a previous

ain (top); it shows functional activations overlaid on anatomical scans averaged

2).

mates (b) extracted from the cluster shown in red for neural activity observed

vity observed during hard versions of cognitive control tasks relative to easy

lack asterisks denote a p value < 0.05; daggers denote a trend. S1 and S2 refer
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of fatigue syndromes observed in amateurs of extreme sports,

such as ultra-trail, who may put in danger not only their heart

and knees but also their brains. Finally, these findings could

perhaps be extended to other types of work overload and

therefore have applications not only for sport coaching but

also for work management and health care, because excessive

work is one of the possible routes to burnout syndrome. We

should keep in mind, however, that our overtrained participants

were (fortunately) not in a full-blown burnout state. It remains

possible, and even likely, that factors other than cognitive con-

trol fatigue come into play for a transition to long-term burn-

outs. Further research is needed to investigate those putative

factors.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

The experimental design of the study was approved by the Ethical Committee of Hôpital de la Piti�e-Salpêtrière. Fourty-two well-

trained male triathletes ([ _VO2max] = 64.1 ± 4.9 ml$kg-1$min-1) volunteered to participate in this study. They were paid a fix amount

of 400V, plus one option that was selected in a random trial of the choice task. All subjects had regularly competed in triathlons

for at least 3 years and were training a minimum of 10 hours per week. Their performance level over the short (Olympic) distance

triathlon (i.e., 1.5-km swimming / 40-km cycling / 10-km running) ranged between 2 h and 2 h 20 min, which roughly corresponds

to national level of competition). Before participation, subjects underwent medical assessment by a cardiologist to ensure normal

electrocardiographic patterns and obtain a general medical clearance. All subjects were free from chronic diseases and were not

taking medication. After comprehensive explanations about the study, all subjects gave their written informed consent to participate.

Subjects were assigned to either the control group (CTL) or the overreaching group (OR) so as tomatch performance level, habitual

training volume, and past experience in endurance sports. Five participants were excluded due to sleeping or excessive movements

in the scanner or failure to comply with instructions about behavioral tasks. In the end, our dataset included 18 CTL subjects (age =

36 ± 1.5) and 19 OR subjects (age = 35 ± 1.2).

To provide a reference point for the immediacy bias in the general population, we included groups of participants with similar age,

sex and education level, who were tested with the same choice tasks in independent studies.

METHOD DETAILS

Training procedures
An overview of training procedure is shown in Figure 1. The training of each participant was monitored for a period of nine weeks in

total, whichwas divided into four distinct phases. The two first phases (I and II) were similar in theOR andCTL groups. During the third

phase (III), the OR group completed a 3-week overload program designed to deliberately induce fatigue: the duration of each training

session was increased by 40% (e.g., a 1-hour run including 10 repetitions of 400 m at the maximal aerobic running speed was con-

verted into an 85-min run including 14 repetitions of 400 m at the maximal aerobic running speed). Participants reproduced the same

training program during each week of the overload period, which was kept as usual, except for the increase in duration. The CTL

group repeated its usual training program during this third phase (III). Thereafter, all participants completed a 2-week taper period

(IV), where their normal training load (I) was decreased by 40%, following the guidelines for optimal tapering in endurance sports [50].

During training, fatigue and depression were monitored by asking participants to fill the Brunel mood questionnaire [12] every two

days. We used a sub-selection of items to measure the change in depression score (during the last two days, how often did you feel:

‘‘Miserable,’’ ’’Unhappy,’’ ‘‘Depressed,’’ ‘‘Unable to fall asleep,’’ ‘‘Insomniac’’) and in fatigue score (‘‘Collapsed,’’ ’’Energetic’’ (-),

‘‘Tired,’’ ‘‘Exhausted,’’ ‘‘Having heavy legs’’) between the beginning and end of each phase. Fatigue and depression scores were

not different between groups at the beginning of the training program.

During phase I, all subjects were familiarized (on separate days) with both the cognitive tasks going to be performed during fMRI

scanning, and the maximal power output (MPO) test (described below). The MPO test was performed on three occasions: before

phase III (Pre), after phase III (Post) and after phase IV (Taper), on the same day of the week and at the same time of the day. To ensure

that performance variations across MPO tests were due to the global training regimen and not to the training session performed the
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day before testing, the subjects were required to abstain from training during a 24-h period before eachMPO testing session. The day

after Post MPO test, all participants completed two 45-min fMRI sessions during which they performed cognitive tasks. The two ses-

sions were interspaced with a 45-min self-paced cycling time trial.

Cycling exercises
All MPO tests were performed using an electronically-braked cycle ergometer (Excalibur Sport, Lode, Groningen, the Netherlands).

The incremental exercise protocol started with a 6-min warm-up at a workload of 100W, and then increased by 25W every 2minutes

until voluntary exhaustion to estimate MPO. Subjects wore a facemask covering their mouth and nose to collect all expired breath

(Hans Rudolph, Kansas City, MO) and calculate _VO2max using a metabolimeter (Quark, Cosmed, Rome, Italy). Complete exhaustion

was confirmed by physiological criteria [51] – that is, a plateau in _VO2max despite an increase in PO. MPO was calculated as MPO =

Wlast + 25 (t/120) [52], whereWlast is the last completed workload and t the number of seconds sustained inWlast. _VO2max was defined

as the highest 30 s average of breath-by-breath values [53].

The 45-min self-paced time trial (TT) was completed between the two fMRI sessions. Participants were instructed to achieve their

best performance. Before the TT, participants respected a 15-minwarm-up (10minutes at a workload of 100W and 5minutes at 50%

of the Post MPO). Both warm-up and TT were performed on participants’ own bike mounted on a braked Cyclus2 ergometer (RBM

GmbH, Leipzig, Germany). To mimic field conditions, the triathletes were provided with distance, speed, PO, cadence information

and ad libitum sport drinks and water. Every five minutes during the TT, subjects’ rating of perceived exertion (RPE) was recorded

using the 6-to-20 point Borg’s scale [13]. This scale measures effort sensation, with 6 corresponding to sitting in a chair, and 20

to the maximal effort ever experienced.

fMRI experiment
Participants came to the lab on the second day after the end of phase III. On this day, they performed an inter-temporal choice cali-

bration procedure to elicit their indifference curve. Inter-temporal choices were real in the sense that the chosen option in one

pseudo-randomly selected trial was actually implemented (any trial could be drawn, except those where a delay longer than one

year had been selected). Subjects then performed two sessions of cognitive tasks while fMRI data were acquired. Each session

lasted for about 45 minutes (5 mins of setup, 10 mins of structural MRI acquisition before the first and after the last session, +

30 mins of functional MRI during task performance). Sessions were divided into three consecutive runs of N-switch blocks (two

12-switch runs separated by one 1-switch run) and three consecutive runs of N-back blocks (two 3-back runs separated by one

1-back run). Each run comprised five successive blocks. The task to be performed was indicated by a 5 s instruction screen pre-

sented at the beginning of each block. The length of blocks was randomly varied between 16 and 32 trials (24 on average, duration =

43 s) for N-switch tasks and between 18 and 26 trials (22 on average, duration = 40 s) for N-back tasks. The order of N-switch and

N-back tasks was counterbalanced across subjects. Every 50 s on average (at the end of blocks), another 5 s instruction screen indi-

cated to participants that they would have to make three successive inter-temporal choices, giving a total of 90 choices per session.

The options proposed in inter-temporal choices were tailored based on the results of the calibration session conducted just before

the fMRI experiment.

Behavioral tasks
For cognitive tasks, participants were instructed to reach the best possible performance level (correct response rate) with the short-

est possible response time. On the week before the experiment as well as on the day of the experiment (before MRI sessions) they

read the instructions and were trained to perform all versions of cognitive tasks until they reached a performance criterion (4 consec-

utive blocks above 90% of correct responses), or until they reached a maximal duration of three hours.

In both the N-back and N-switch tasks, letters appeared successively at the center of the screen. They could be vowels (e,a,i,o,u,y)

or consonants (b,c,g,k,m,p), written with either upper or lower case, and with either red or green color. On every trial, the letter was

displayed for 900 ms, corresponding to the time window during which participants could give their response, followed by a blank

screen lasting for 400 ms.

For the N-back task, participants were instructed to indicate when the current letter was the same as that presented N trials before.

The ‘yes’ and ‘no’ responses were given by pressing left or right arrow on the keyboard (key-response associations being counter-

balanced across participants). Difficulty was manipulated by changing N from 1 (easy version) to 3 (hard version). The sequence of

letters was pseudo-randomized so as to get one third of ‘yes’ and two thirds of ‘no’ trials, among which half was made of traps (2- or

3-back repeats in the 1-back version, and 1- or 2-back repeats in the 3-back version). Color and case were varied but had to be

ignored in this task.

For the N-switch task, color served as a contextual cue telling participants whether to perform a vowel/consonant or an upper/

lower case discrimination task. As an example, a subject had to indicate consonant (left arrow) versus vowel (right arrow) when

the letter was green, or upper case (left arrow) versus lower case (right arrow) when it was red. Colors, discrimination tasks and

response keys were fully counterbalanced across participants. Letters were pseudorandomly distributed over trials in order to bal-

ance the frequency of each task (vowel/consonant or upper/lower case discrimination) and the side of correct response (left or right).

The difficulty was imposed by the frequency of switches (color changes) from one per block in the easy version to 12 per block (40%

of trials) in the hard version.
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Just before the experiment, participants performed a calibration session with real choices. They were told that one of the choices

made either during the calibration or during test sessions would be randomly drawn and implemented. This was actually done except

that randomization was biased in order to exclude delays longer than one year. The amount of money that they could get varied be-

tween 1V and 100V, which was quite significant relative to the fixed payoff (400V for the entire experiment).

Choice task trials were intermingled with cognitive task trials (three per minute on average). There were 90 choices per fMRI ses-

sion, thus a total of 180 choices in the entire experiment. Every trial, participants had a maximum of 5 s to state their preference be-

tween a small immediate reward (with variable amount) and a delayed reward (with variable reward and delay). The location (left or

right) of the immediate and delayed options on the screen was counterbalanced across trials. There were ten possible delays (3 days,

1 week, 2weeks, 3weeks, 1month, 3months, 6months, 1 year, 5 years and 10 years) and three possible delayed rewards (50V, 75V,

100V), which were presented in a randomized order. The immediate rewards were derived from subject-specific indifference points,

which describe how each of the delayed reward is discounted with delay. These indifference points were obtained using a bisection

procedure (with 11 steps for each delayed reward and each delay) that was implemented in the calibration session following on our

previous study [5]. In each session of the experiment, three immediate rewards were presented for each of the ten delays and each of

the 3 delayed rewards: one around the indifferent point, one above and one below. The two options of a choicewere therefore close in

(discounted) value, maximizing the sensitivity to potential fatigue effects, as it was previously implemented for TMS studies [54].

Between sessions, the amounts proposed as immediate rewards were randomly varied by ± 1V to avoid repeating choices and

hence automatic responding. Note that delays and reward levels were different in the calibration procedures used for the other data-

sets included as a reference point for the immediacy bias. The immediacy bias is nevertheless comparable across datasets, because

it is an additive parameter (on top of reward and delay terms in the computation of subjective value).

MRI data acquisition
T2*-weighted echo planar images (EPIs) were acquired with BOLD contrast on a 3.0 T magnetic resonance scanner (Siemens Verio).

A tilted-plane acquisition sequence was used to optimize sensitivity to BOLD signal in the orbitofrontal cortex (58, 59). To cover the

whole brain with sufficient temporal resolution (TR = 2.180 s) we used the following parameters: 40 slices, 2.5 mm thickness, 1mm

interslice gap. Structural T1-weighted imageswere coregistered to themean EPI, segmented and normalized to the standard T1 tem-

plate and then averaged across subjects for anatomical localization of group-level functional activation. EPI images were analyzed

using statistical parametric mapping (SPM8) environment (Wellcome Trust Center for NeuroImaging, London, UK). Preprocessing

consisted of spatial realignment, normalization using the same transformation as anatomical images, and spatial smoothing using

a Gaussian kernel with a full width at a half-maximum of 8 mm.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
Twomain dependent variables were analyzed: first cognitive performance (correct choice rate in hard relative to easy cognitive tasks,

N-back and N-switch trials pooled together), second the parameters of the best choice model (present bias, discount factor and

choice temperature). For each variable the main analyses tested the main effect of training overload (comparison between groups),

the main effect of acute physical exercise (comparison between sessions), as well as the interaction between these two factors. Main

effects and interactions were assessed using two-way ANOVA, with session as a within-subject factor and group as a between-sub-

ject factor. For comparisons involving only one factor (such as comparing between groups the model parameters fitted on the

calibration choices), we used two-tailed t tests. We checked that all significant results were maintained when we replaced t tests

by non-parametric tests (Wilcoxon rank sum tests). For testing the effect of training overload on the immediacy bias, we also

computed the exact probability of obtaining at least the same mean, in a group of the same size, from random sampling

(1,000,000 iterations) within the cohort of control participants (n = 106).

Computational modeling
To fit impulsive choices (selection of immediate reward IR versus delayed reward DR), we used a standard softmax function of the

relative value (RV) between the two options. This standard model was compared to a variant including an additive immediacy bias

that captures a preference for the present independently from rewards and delays (Equation 1 versus Equation 2). In both cases, RV

was weighted by a temperature parameter b that adjusts the stochasticity of choices. To calculate RV, we compared two classical

delay discountingmodels, where rewards decrease hyperbolically versus exponentially with delay (see Equation 3 versus Equation 4).

In both cases, sensitivity to delay (D) was captured by a discount parameter k. The four models were:

PðIRÞ = 1

1+ exp
�
RV
b

�; (Equation 1)
PðIRÞ = 1

1+ exp
�
RV
b
� bias

�; (Equation 2)
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RV =
DR

1+ kD
� IR; (Equation 3)
RV = DR3 expð�kDÞ � IR; (Equation 4)

The four models (two softmax times two discounting functions) were fitted to choices made during the calibration session (210

choices) and during each MRI session separately (90 choices each) by the two groups of participants. Models were inverted by mini-

mizing free energy, using a variational Bayes approach under the Laplace approximation [55, 56], as implemented in the VBA

MATLAB toolbox [48], available at http://mbb-team.github.io/VBA-toolbox/). This algorithm not only inverts nonlinear models to pro-

vide posterior distributions on fitted parameters, but also estimates their evidence, which represents a trade-off between accuracy

(goodness of fit) and complexity (degrees of freedom). The log-evidences, estimated for each participant andmodel, were submitted

to a group-level random-effect analysis [57]. This analysis was used to generate exceedance probability, which measures the plau-

sibility that a given model is more frequently implemented by participants that any other model in the comparison set. For the cali-

bration session choices, priors were set between 0 and 0.1 for the discount rate parameter k, and between 0 and 10 for the choice

stochasticity parameter b, with variance being adjusted so as to get a flat prior. For the immediacy bias parameter, prior distribution

was centered on 0, with a variance equal to 1 (or 0 for the model without bias). For the MRI session choices, priors were centered on

the posterior means estimated on calibration choices. An illustration of best model fit is provided in Figure 4.

MRI data analysis
In order to identify regions involved in both cognitive control processes and inter-temporal choices, we regressed subject-level pre-

processed fMRI time series against the following GLM using SPM 8 [49]. Two first categorical regressors (one for each difficulty level)

were included to model blocks of cognitive task trials with boxcar functions. They were parametrically modulated by the block num-

ber within a session (to capture any fatigue effect across blocks). A third categorical regressor was included to model choice trial

onsets with a stick function. It was modulated by four parametric regressors including immediate reward (IR), delay, response

time and eventual choice (1 for patient and�1 for impulsive choice). These parametric regressors weremeant to capture specificities

of each particular trial, whereas the categorical regressor captured common processes involved in performing an inter-temporal

choice. All regressors of interest were convolved with a canonical hemodynamic response function (HRF). The GLM also included

subject-specific realignment parameters in order to correct for motion artifacts, adding six regressors of non-interest.

Linear contrasts of regression estimates (betas) were computed at the subject level and taken to group-level random-effect anal-

ysis. Subject-level contrasts were categorical regressors against implicit baseline, which captured easy task-related activity, hard

task-related activity and choice-related activity. A conjunction analysis (logical AND) was conducted at the group level between

the difficulty contrast (1 on hard and �1 on easy task-related regressors) and the choice contrast (1 on choice-related regressors).

Unless otherwise specified, activations maps were thresholded at both the voxel level (p < 0.001, uncorrected) and the cluster level

(p < 0.05 after family-wise error correction for multiple comparisons, corresponding to a minimum of 333 voxels).

The main region of interest (ROI), in the left MFG (red cluster in Figure 5), was delineated from a previous study [5] to avoid non-

independence issues. This ROI was defined as the intersection between 1) clusters that showed significant conjunction between acti-

vation with task difficulty and during choice, and 2) clusters in which choice-related activity showed significant interaction between

task difficulty and time on task (higher decrease in choice-related activity in subjects performing hard tasks relative to subjects per-

forming easy tasks). To test for the specificity of overreaching effect on left MFG activity, we checked other ROI within the cognitive

control network involved in inter-temporal choice. These ROI were defined as 8mm spheres (using MarsBar toolbox; M. Brett et al.,

2002, Int. Conf. Funct. Map. Human Brain, abstract) centered on local maxima of choice-related activity in the CTL group (maximizing

the probability to observe a difference between groups). They included the inferior parietal lobules bilaterally and the right MFG (see

results in Figure S1). Regression estimates were extracted from all these ROIs and compared between groups and sessions using

two-tailed t tests. The only significant effect was a difference between OR and CTL groups in the left MFG. We also checked that

activity in the left MFG cluster was not affected by any parametric regressor of the GLM (block number, immediate reward, delay,

response time, choice type). In particular, left MFG activity was not related to reward or delay (see Figure S2), in keeping with the

computational analysis showing that fatigue effect on choices was independent from these factors. To establish a link between

the behavioral and the neural effects of cognitive control fatigue, we tested across-subjects correlation between the fitted immediate

bias in inter-temporal choice and the choice-related activity in MFG, using robust regression tool implemented in MATLAB (see

Figure S3).

DATA AND CODE AVAILABILITY

Data and computer codes used for the current study are available online (https://drive.google.com/drive/folders/

1QUSV_eHgIThskfDbqkwEnL2clc_kzeGA).
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