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Mood fluctuations shift 
cost–benefit tradeoffs in economic 
decisions
Roeland Heerema 1,2*, Pablo Carrillo 1,2, Jean Daunizeau 1,2, Fabien Vinckier 1,2,3,4 & 
Mathias Pessiglione 1,2*

Mood effects on economic choice seem blatantly irrational, but might rise from mechanisms adapted 
to natural environments. We have proposed a theory in which mood helps adapting the behaviour 
to statistical dependencies in the environment, by biasing the expected value of foraging actions 
(which involve taking risk, spending time and making effort to get more reward). Here, we tested 
the existence of this mechanism, using an established mood induction paradigm combined with 
independent economic choices that opposed small but uncostly rewards to larger but costly rewards 
(involving either risk, delay or effort). To maximise the sensitivity to mood fluctuations, we developed 
an algorithm ensuring that choice options were continuously adjusted to subjective indifference 
points. In 102 participants tested twice, we found that during episodes of positive mood (relative to 
negative mood), choices were biased towards better rewarded but costly options, irrespective of the 
cost type. Computational modelling confirmed that the incidental mood effect was best explained by 
a bias added to the expected value of costly options, prior to decision making. This bias is therefore 
automatically applied even in artificial environments where it is not adaptive, allowing mood to spill 
over many sorts of decisions and generate irrational behaviours.

Mood is typically construed as an affective state that chiefly fluctuates on a valence dimension (between happi-
ness and sadness), that is not precisely related to one specific trigger, that can last for some time, and incidentally 
exert pervasive effects on thoughts and actions. From the perspective of rational decision theory, mood fluctua-
tions are viewed as undesirable, because they drive us to make poor decisions. Indeed, we often miss interesting 
opportunities in moments of sadness, and embrace foolish enterprises in moments of happiness. Decision biases 
induced by incidental mood changes have been documented by statistical observations of real-life behaviours. 
Classical examples are that people are more inclined to buy a lottery ticket, or to invest in some stock market, 
on days when the weather is nice, or after the victory of their favourite sports  team1–5. These decision biases 
have been reproduced at a shorter time scale in the laboratory, using newspaper reports or small gifts to induce 
mood  changes6–8. Although comparisons between groups using a single mood-inducing stimulus yielded mixed 
 evidence9–11, comparisons between episodes created with different inductions showed that participants were 
generally more prone to take risks when in a good mood, and avoid risks when in a bad  mood12–15. These effects 
qualify as decision biases because choice outcomes are independent from the events that triggered mood changes 
(e.g., lottery outcomes are independent from sport events). To be rational in this perspective, a decision-maker 
should coldly consider what relates to the attributes of choice options, and nothing else.

However, an opposite view has emerged, building on the idea that, if mood flexibility has been favoured by 
natural selection, it must provide an adaptive  advantage16,17. By flexibility we mean here the ability to vary as a 
function of life events. A key suggestion is that mood may provide a valid generalization of reward estimates over 
time and  actions18. The generalization is indeed valid in environments where sources of reward are both auto-
correlated (across time) and inter-correlated (between them). This is typically the case with seasonal variations 
for hunter-gatherers: the appearance of accessible fruits at the beginning of spring is associated with more of 
these fruits getting ripe over the next weeks, together with other types of fruits, and also with little preys coming 
out their nests and burrows. If gathering fruits improve mood, and if good mood favours foraging behaviour, 
then rather than driving irrational decisions, mood fluctuations would actually help adjusting the behaviour to 
the statistics of the environment.

OPEN

1Motivation, Brain and Behavior (MBB) Lab, Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, 75013 Paris, 
France. 2Sorbonne Université, Inserm U1127, CNRS U7225, 75013 Paris, France. 3Université Paris Cité, 75006 Paris, 
France. 4Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, 
75014 Paris, France. *email: roelandheerema@hotmail.com; mathias.pessiglione@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-45217-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18173  | https://doi.org/10.1038/s41598-023-45217-w

www.nature.com/scientificreports/

In the initial formalization of this seminal  intuition19, mood was assumed to accelerate learning of reward 
availability by amplifying reward prediction errors associated with action outcomes. Although interesting, this 
mechanism misses the fact that mood can have a direct impact on decisions, by shifting the values of choice 
options, without resorting to learning processes that would only update values when outcomes are  observed20,21. 
This direct decision bias has been modelled in the case of choice under risk, and associated with the activity of 
brain regions that implement the valuation of positive and negative  prospects12,15. In a recent theoretical  paper22, 
we proposed that shifting attitude towards risk is just one case of the general impact that mood may have on 
cost–benefit tradeoffs. Indeed, other types of cost, such as time and effort, may be as important as risk in the 
decisions to forage or not for particular rewards. Therefore, mood fluctuations should impact how rewards are 
discounted, not just by risk, but also by time and effort. Moreover, if the bias is automatically triggered, mood 
effects on decisions should be observed even when not adaptive, that is even in situations where mood triggers 
and choice options are artificially decorrelated.

To test this assumption, we designed a new behavioural task that combines the same mood induction proce-
dure, using quiz questions and feedbacks as in previous  papers12,15, with economic choices in which monetary 
rewards are traded against different types of cost (risk, delay, physical effort, mental effort). Choices always 
oppose a small amount of money at no cost to a bigger amount at a higher cost, as is classic in the neuroeconomic 
 literature15. The same kind of choices have already been implemented in a previous study that explored the effects 
of cognitive fatigue on economic  decisions23. The aim here was thus to systematically assess the effects of high 
and low mood induction on how the different types of costs are traded against the same monetary rewards. Con-
sistent with our theory, we observed that high/low mood biased all choices toward accepting/declining to incur 
higher costs for bigger rewards, irrespective of which type of cost was associated with the reward. Computational 
modelling of choice behaviour indicated that mood effects were best explained by an additive shift of decision 
values favouring either the costly or uncostly options.

Results
Hereafter, we describe an experiment featuring a mood induction procedure interleaved with an economic choice 
task. This experiment, conducted on 102 participants (76 females/26 males, mean age = 32.5 ± 1.6), is referred to 
as the main study, by opposition to pilot studies 1 and 2, respectively conducted on 25 and 21 participants, and 
described in the Supplementary Information (with demographic details in Table S1).

Mood fluctuations
By design, the tasks meant to induce mood fluctuations (with feedbacks on quiz questions) were independent 
from the tasks meant to reveal their effects (on economic decisions).

To evoke positive and negative mood episodes, we adopted a previously established  paradigm15 that has since 
been  replicated12. Participants played a general-knowledge quiz featuring multiple-choice questions. Feedback 
was given immediately upon answering a quiz question, after which participants first made an economic decision 
and then rated their current mood. Completing one trial thus consisted in answering one quiz question, making 
one economic choice, and providing one mood rating (Fig. 1a). The order of rating and choice was reversed in 
comparison to our previous design, with the aim to avoid a direct effect of expressing mood on making decisions. 
Mood was manipulated through the positive/negative feedbacks, which consisted of a happy/sad emoji and a bell/
buzz sound. Correct answers were always followed by positive feedbacks. Critically, feedbacks given to incorrect 
answers depended on an experimentally controlled bias that varied across conditions. There were 3 conditions, 
with a 50% bias during positive episodes, a 0% bias during negative episodes, and a 25% bias for transitions 
between episodes. The bias here indicates the proportion of incorrect answers that are given positive feedback. 
Because participants were actually wrong on most quiz questions, the bias manipulation created sequences with 
high, medium and low rate of positive feedbacks (Fig. 2a). As an additional manipulation, questions asked during 
positive and negative episodes were respectively easier and harder, while during transitions between episodes 
they were intermediately difficult. The question difficulty was determined before the experiment as the rate of 
incorrect answers made by a different group of participants in a previous study. This second manipulation ampli-
fied the difference in positive feedback rate between episodes, and thereby the amplitude of mood fluctuations.

The main study comprised two sessions, scheduled approximately two weeks apart. This was done in the 
interest of a larger project assessing the replicability of behavioural tests, which is beyond the scope of this paper. 
An experimental session comprised two positive and two negative episodes in a random order. Each episode 
spanned 18 trials and was preceded and followed by 7 transition trials. Here we report results from both sessions 
pooled together (for a total of 2 × 128 = 256 trials).

Reflecting the manipulation of question difficulty, the mean correct-response rate was 21.6%, 35.8% and 50.6% 
during negative episodes, transitions, and positive episodes, respectively. With the additional bias manipula-
tion, the positive feedback rate was respectively 21.6%, 52.1% and 76.2%. Consistently, mood rating increased / 
decreased in the course of positive / negative episodes and returned to baseline between episodes (Fig. 2b). Note 
that mood was gauged at every trial in the present protocol, such that no interpolation was needed, contrary to 
previous  studies12,15.

We tested the success of the mood manipulation, separately for the two sessions, by testing the difference 
between mood ratings given during positive vs. negative episodes. During both sessions, mean rated mood was 
significantly higher in positive than in negative episodes (Δsession 1 = 0.45 ± 0.07, Δsession 2 = 0.35 ± 0.07; t1(101) = 6.41, 
t2(101) = 5.25; p1 = 4.5E−9, p2 = 8.4E−7), with no significant difference between the two (t(101) = 1.341, p = 0.183). 
Thus, repeating the same experiment with different questions two weeks apart did not affect the success of mood 
induction, allowing the two sessions to be pooled together. We also tested the success of positive and nega-
tive inductions separately, by testing against zero the slope of mood ratings calculated across trials of a same 
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episode. Both positive and negative inductions were significant (βpos = 0.015 ± 0.003 and βneg = − 0.035 ± 0.004, 
tpos(101) = 5.54 and tneg(101) =  − 9.09, ppos = 2.43e−7 and pneg = 9.66e−15). Negative induction was significantly 
more efficient than positive induction (t(101) = 4.63, p = 1.12e−5), an asymmetry that was already observed in 
previous  studies12,15,18. Finally, we tested whether the efficiency of mood induction would decline with the repeti-
tion of episodes, by comparing the first and second halves of sessions (pooling the two sessions). The difference 
in mood rating slopes between positive and negative episodes was significantly different from zero in both halves 
(Δβearly = 0.054, Δβlate = 0.045, both t(94) > 6.48, both p < 4.2e−9), with no difference between the two (t(94) = 1.06, 
p = 0.292), arguing against a possible decline in the efficiency of our mood induction procedure.

Thus, the design of the main study proved to induce robust mood fluctuations. In pilot studies 1 and 2, we 
have tried variants around the same methodology (see Table S2 for a comparison of the three protocols). Of 
note, we used 4 different scales (‘happy’, ‘sad’, ‘calm’, ‘tense’) in study 1, with the aim to decompose mood into 
independent sub-dimensions, such as valence (happy versus sad) versus arousal (calm versus tense). However, 
these supplementary scales did not provide much additional information, as participants reported feeling both 
happy and calm in positive episodes, and both sad and tense in negative episodes. Indeed, happy minus sad rat-
ing was strongly correlated to calm minus tense rating (ρ = 0.40 ± 0.07, t(24) = 6.12, p = 3E−6). Also, we intended 
to implement more gradual transitions between positive and negative moods, with neutral episodes giving no 

Figure 1.  Behavioural tasks. (a) Timeline of a single trial example. A quiz question was presented for 3.5 s, 
followed by a screen with four answer options. On a tactile screen, participants had to select an answer within 
4.5 s and immediately received visual and auditory feedback lasting for 1 s. Then they made one economic 
decision by selecting which of two options they preferred. Finally, they rated their mood by positioning a cursor 
on a visual analogue scale. Economic choice and mood rating were self-paced. (b) Choice examples probing 
how monetary rewards are discounted with the different types of costs (risk, delay, physical effort, mental effort). 
The two options were either a variable small reward at no cost, or a 30€ reward obtainable at a variable cost. The 
costs in the examples shown entailed a 42% risk of losing 10€ instead of getting the reward (risk discounting), a 
delay of 9 months and 1 week until reception of the reward (delay discounting), climbing 5 flights of stairs and 
6 steps (physical effort discounting), and copying 11 pages plus 1 line of text in a foreign language (mental effort 
discounting).
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feedback (study 1) or additional levels of feedback bias (study 2). Again, these variants did not seem to augment 
the amplitude of mood fluctuations, so we did not retain them for the main study. Nevertheless, in both pilot 
studies the mean rated mood significantly diverged when comparing positive and negative episodes (Fig. S1).

Choice behaviour
At the end of a trial, participants made an economic decision between a small reward delivered with no cost and 
a bigger reward obtainable at some cost (Fig. 1b). The big reward was always 30€ but the small reward varied 
across trials (between 0.1€ and 29.9€). The cost type and level also varied across trials. There were 4 possible 
types: a risk of losing money, a delay to payment, a physical effort (climbing flights of stairs), or a mental effort 
(copying a cryptic text). The two variables (small reward and cost level) were selected using an online trial gen-
eration (OTG) algorithm (see “Methods”).

We reasoned that if moods influence decisions, this is more likely to manifest in choices for which the 
participant has no strong prior preference between the two options. To maximize the sensitivity of our choice 
trials, we therefore focused on choice options for which the participant is close to indifference. The issue is that 
different participants may have different preferences regarding how reward should be discounted with risk, delay 
or effort. To account for these subjective preferences, it is common practice to use discount functions with free 
parameters fitted to the participant’s choices. When these preferences need to be identified for the generation of 
test trials, as in our case, the parameters are typically fitted to choices made during a pre-test calibration phase 
of the experiment. Because this calibration procedure takes time and may by itself influence mood, we opted 
for a procedure that updates indifference curves continuously throughout the experiment. A key advantage of 
such an OTG procedure is keeping track of indifference points, and hence presenting sensitive choices, even if 
preferences vary with mood induction or drift with time on task. A drawback, however, is that the procedure 
mechanically goes against any effect of the mood manipulation, by proposing better costly options if they are not 
chosen, or better uncostly options in the opposite case. Another inconvenience is that the choice model must be 
defined before observing the choices. If it so happens that the model is unable to account for the participant’s 
choices, then all trials will present options that are off the indifference curve. To mitigate that concern, we 
opted for an agnostic parameterization of the indifference curve, in which the value of rewards decays linearly 
within pre-specified cost intervals. The advantage of this piecewise linear function is that it can approximate 
any discounting shape, whether convex or concave (Fig. 3a). The piecewise linear function was updated after 
every choice and used to draw a reward/cost combination under a probability distribution that scaled with the 

Figure 2.  Mood fluctuations. (a) One experimental session of an example participant. The coloured solid line 
visualizes the feedback bias (proportion of incorrect answers given a positive feedback): 50% in positive episodes 
(yellow), 25% in the transition between episodes (grey), 0% in negative episodes (blue). In addition, the dotted 
line displays the a priori difficulty (rate of incorrect answers obtained from an independent group) of each 
presented question. Questions were sorted and split in three levels of difficulty assigned to positive episodes, 
transitions, and negative episodes. (b) Effect of feedback on mood (z-scored rating). The plot show an average 
over trials surrounding positive and negative episodes, with no baseline correction. Solid lines show the rated 
mood averaged across participants, shaded areas represent inter-participant standard errors around the mean.
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estimated likelihood of indifference (Fig. 3b). This eventually focuses the distribution of options presented across 
trials around indifference points.

To compare the performance of the OTG procedure with other sampling procedures, we ran simulations of 
dummy choice trials based on various discount functions (see “Methods”). Two extreme approaches to sampling 
the reward-cost space are random sampling (based on a uniform probability distribution) and grid sampling 
(at regular intervals). When compared to these approaches (Fig. S3), the OTG algorithm better predicted the 
simulated choices (with a higher balanced accuracy) and provided better estimates of the model parameters (with 
smaller posterior variance). We also checked that the reward and cost levels selected by the OTG algorithm were 
independent from mood fluctuations. Indeed we found no difference between positive and negative episodes, 
neither in mean reward magnitude (μpos = 54.5 ± 1.1%, μneg = 55.5 ± 1.2%, t(101) = 1.47, p = 0.146), nor in any 

Figure 3.  Online trial generation. (a) Modelling the indifference curve. The effect of mood is presumably 
maximal in decisions between options of similar values, for which the participant has no strong preference. 
To generate such decisions, it is necessary to identify indifference points within a 2D space formed by the 
two variables that varied across trials: the small reward and the cost associated with the big reward. To avoid 
commiting to any discounting shape, we modelled this indifference curve as 5 edge-constrained linear functions 
fitted to the 5 adjacent cost bins (top panel). This piecewise linear function therefore included 6 parameters in 
total: the intercept and the 5 slopes. When adjusted over successive trials (light to dark gray dashed lines) to 
best describe the observed choices, the piecewise linear mapping can approximate any discounting shape, as for 
instance a convex exponential-decay function (middle panel), or a concave parabolic-decay function (bottom 
panel). (b) Generating choice options. After every trial, a map of the indifference space is computed given the 
updated estimates of the 6 parameters (step 1). Brighter colours in the top panel correspond to (reward, cost) 
combinations for which choice probability is closer to 50%. From this map, a probability density function is 
derived, under which a cost level is randomly drawn (step 2). Then, the small reward that is expected to yield an 
indifferent choice for this particular cost level is identified (step 3). The selected cost level and small reward are 
finally presented to the participant at the next choice trial (step 4).
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of the 4 mean cost levels (41.2 ± 1.1% < μpos < 51.2 ± 0.9%, 41.5 ± 1.2% < μneg < 50.2 ± 0.8%, 0.092 < t(101) < 1.03, 
0.268 < p < 0.927).

As a model-free assessment of mood effects, we simply compared the choices made during positive and 
negative episodes. Across the different types of cost (Fig. 4a), there was a significant difference of 5.1 ± 1.1% 
(t(101) = 4.76, p = 6.4E−6), meaning that participants were taking the costly option more often during posi-
tive than during negative episodes. This effect was again significant in both sessions (Δsession 1 = 5.24 ± 1.5%, 
Δsession 2 = 5.06 ± 1.4%; t1(101) = 3.50, t2(101) = 3.59; p1 = 7E−4, p2 = 5E−4), with no significant difference between 
the two (t(101) = 1.341, p = 0.183), which were therefore analysed together. Also, the effect was significant in 
both the first and second halves of sessions (Δearly = 5.23 ± 1.5%, Δlate = 5.05 ± 1.4%; t1(101) = 3.50, t2(101) = 3.58; 
p1 = 7E−4, p2 = 5E−4), with no significant difference between the two (t(101) =  − 0.09, p = 0.926), arguing against 
an attenuation of mood influence on decisions. When looking at the four cost types separately (Fig. 4b), the dif-
ference was in a similar range (from 3.4 ± 1.8% to 7.3 ± 1.6%) and was either significant or bordering significance 
(from p = 1.8E−5 to p = 0.064). We then investigated whether the difference in choice rate was correlated across 
participants between cost types taken two by two. All correlations were significant when only considering delay, 
physical effort, and mental effort (all ρ > 0.42, all p < 1E−5), but the difference observed for risk was unrelated 
to the other cost types (all |R|< 0.08, all p > 0.45). However, a direct comparison showed no significant effect of 
cost type (one-way ANOVA: F(3,404) = 0.98, p = 0.403), hence no reason to single out choice under risk, except 
for the difference in baseline choice rates.

We then inspected the time course of preference shift across trials within an episode. Choice rate closely 
followed the dynamics of mood rating (compare Fig. 4d and Fig. 2b), with the difference between positive and 
negative conditions emerging in the first trials and peaking in the last trials of an episode. Even if it revealed 
significant mood effects, choice as a measure has limitations, first because it is binary and second because it is 
counteracted by the OTG procedure. To get a more sensitive measure, we turned to the area under the indiffer-
ence curve that is systematically updated through the OTG procedure (Fig. 4b). This time-resolved continuous 
measure is a proxy for the global willingness to accept the costly option. Critically, this measure increased across 
trials during positive episodes (βpos = 0.006, tpos(101) = 3.54, p = 6E−4), and decreased during negative episodes 

Figure 4.  Effects of mood induction on choice behaviour. (a) Comparison of costly choice rates, shown per 
cost type, between positive (yellow) and negative (blue) episodes. (b) Comparison of costly choice rates across 
all cost types (figure generated with the Raincloud plot toolbox, ref.25). Dots are individual participants included 
in the global distributions. Shades of grey indicate per-participant effect size (difference between positive 
and negative episodes). (c) Comparison of z-scored choice response time (RT) between positive and negative 
episodes. (d) Time course of costly choice rates, across cost types, around positive and negative episodes. 
Choices were binned per series of four consecutive trials that probed the four cost types. (e) Time course of the 
area under the curve (AUC), across cost types, around positive and negative episodes. The inset shows the mean 
AUC slopes over all trials within an episode. In all panels, error bars are inter-participant standard errors of the 
mean. *p < 0.05, **p < 0.01, ***p < 0.001, °p < 0.1, n.s. not significant.
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(βneg = − 0.008, tneg(101) =  − 4.38, pcorr = 3E−5). There is a lag, however, between the time courses of AUC and 
choice rate (compare Fig. 4d and e), due to the facts that the AUC can only be updated once a choice is made, 
and that each cost type was only probed every four trials.

Next, we examined choice response time (RT), which is known to decrease when the decision value increases 
[e.g.,24]. Because in our theory mood augments decision value (toward high-reward high-cost options), we 
expected an interaction between mood and choice (i.e., participants should be faster to choose a costly option 
when in a positive mood). We regressed RT against a linear model including the main effects and interaction 
of the two factors: mood level (positive versus negative episode) and observed choice (costly versus uncostly 
option). The interaction was indeed significant (βChoice × Condition = 0.14, t(101) = 3.24, p = 0.002), indicating that 
participants were globally faster at choosing costly options and even more so when in a good mood (Fig. 4c).

Thus far, we have compared episodes corresponding to the positive and negative moods induced by the 
protocol. To better link choices to the actual mood experienced by participants, we ran a logistic regression 
of choice against mood rating (given in the same trial). We found that indeed, rated mood positively predicts 
costly decisions (βmood = 0.10, t(101) = 4.05, p = 1E−4), an effect that was present in both sessions (βsession 1 = 0.028, 
βsession 2 = 0.028; t1(101) = 2.48, t2(101) = 3.21; p1 = 0.015, p2 = 0.002), with no significant difference between the 
two. To test whether this effect was only driven by the last feedback or by a mood construct that would integrate 
previous feedback, we ran a multivariate logistic regression of choice against the feedback received in the previ-
ous trial as a categorical regressor (positive or negative), and the mood rating given in the previous trial as a 
continuous regressor. We found that the feedback just received has the largest impact on the willingness to take 
the costly option (βFeedback = 0.31, t(101) = 6.45, p = 4E−9), but that mood rated before this last feedback also had 
a significant impact (βPrevious Mood = 0.07, t(101) = 3.06, p = 0.003).

To better disentangle the mood effect from a direct effect of feedback, we conducted a regression across 
participants. For each participant, we calculated the mean difference in positive feedback rate, mood rating and 
choice rate, between positive and negative episodes. Then the differences in feedback rate and mood rating were 
both included in a regression model meant to explain the difference in choice rate. We found that the difference 
in choice rate was significantly predicted by the difference in rated mood (βΔ mood = 0.04 ± 0.02, t = 2.26, p = 0.026) 
but not by the difference in feedback rate (βΔfeedback = − 0.17 ± 0.13, t = − 1.27, p = 0.205).

Thus, the mood effects in the main study were strong and robust, as they generalized across cost types and 
remained unchanged when retested two weeks later. However, the design of the main study benefited from two 
pilot studies in which mood effects were less clear (Fig. S2). The impact of mood on costly choice was not signifi-
cant in pilot study 1, where mood was reconstructed post-hoc from separate ratings of happiness and sadness. In 
pilot study 2, the effect of rated mood on costly choice was of the same size as in the main study, but statistically 
weaker due to the small sample (βmood = 0.116, t(20) = 2.58, p = 0.018). This result nonetheless shows that the 
same mood effect on choice can be obtained even when choices are incentivized (as they were in pilot study 2). 
Also, this study enabled testing the order between rating and choice: there was no significant difference in mood 
rating, whether it was given before or after the choice (Δbefore = 0.42, Δafter = 0.31, t(20) = 1.13, p = 0.274), arguing 
against the possibility that the effect on mood was contaminated by the effect on choice. Regarding the effect on 
choice, it is difficult to formally assign the improvement over studies to a specific factor, because we made many 
changes in the design (see Tables S2 and S3 for a comparison). A key improvement after pilot study 1 might be 
the adoption of the OTG procedure to make choices more sensitive to mood fluctuations.

Model‑based analyses
Following the above model-free results, we aimed to disentangle the contribution of mood from that of option 
attributes (reward and cost levels). For this we used computational modelling of choice behaviour, to account 
for mood effect with parameter estimation, an approach that is independent from the OTG procedure (contrary 
to AUC and choice rate). Note that the OTG procedure, which was performed during the experiment prior to 
the model-based analyses, did not use any discount function but a piecewise linear approximation that could be 
flexibly adjusted to any form of discounting. Our computational approach was to first identify the model that 
best fits choices, irrespective of mood, and then to complement that model with a rated mood factor weighted by 
an additional parameter. The model includes a discount function that generates subjective values and a softmax 
function that maps value differences onto choice probabilities.

We tested different discount functions for the different types of cost, as previous studies reported systematic 
differences. For example, both theoretical analysis and empirical  evidence23 suggest that delay discounting is best 
captured by a multiplicative convex function that asymptotically decays to zero, whereas effort discounting might 
rather follow an additive concave function that can produce negative discounted values. We thus started with 
basic functions commonly used in the literature, with one weight parameter (a discount factor) for each type of 
cost. Then we tested variants including additional parameters for the weight on reward and power on costs (to 
control the curvature of the discount function). Regarding the softmax function that provides a sigmoid map-
ping from decision value (difference between options) to choice probability, we also tested variants with different 
inverse temperature and additive bias parameters for the different types of costs. The resulting 36 models (see 
“Methods” for a full description) were inverted and compared using the Variational Bayesian Analysis  toolbox26. 
The most plausible model (with 94% exceedance probability), according to Bayesian model comparison (see full 
results in Table S4) comprised the following discount functions:

where P is the probability of winning and L the amount that can be lost.

(1)VR = kRew · Rew · P − kR · L · (1− P),

(2)VD = kRew · Rew · exp(−kD · D),
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where D is the delay.

where PE is the physical effort.

where ME is the mental effort.
Here, the reward weight kRew is common to all cost types, while kR, kD, kPE, and kME are specific weight param-

eters for risk, delay, physical effort, and mental effort, respectively. Specific weight parameters must be used for 
costs because the risk, delay and effort levels are expressed in different units, so they must be scaled to account 
for how they compare to the reward unit, which was 1€ in all cases, allowing for a single weight parameter. All 
fitted discounted functions are illustrated in Fig. 5a. Note that risk and effort discounting functions can generate 
negative values, whereas values discounted by delay are always positive. Intuitively, this conforms with the notion 
that making an effort or taking the risk of losing money can be worse than doing nothing (no cost, no reward), 
whereas obtaining a reward after a delay is always better than nothing.

The softmax function can be written as a sigmoid transformation of the decision value DV, with P(costly) 
denoting the probability of selecting the costly option:

where DV is V(costly) − V(uncostly).
In the winning model, both the inverse choice temperature β1, which controls the consistency of choices, and 

the choice bias β0, which controls the willingness to take the cost (irrespective of option values), were specific 
to each cost type.

When plotting choices as a function of decision value, we observed a vertical shift between positive and 
negative episodes, with the modelled choices averaged over all trials falling in between (Fig. 5b). This suggests 
that mood modulates the additive bias parameter to shifts choice probability upwards, irrespective of option 
values. Accordingly, rated mood was significantly correlated (R = 0.052 ± 0.01, t(101) = 4.57, p = 1.4E−5) with 
choice residuals, after explaining away the effects of option attributes with the fitted model (Fig. 5c). We therefore 
included rated mood (i.e., the mood rating given in the same trial as the choice made by the participant) as a 
modulator of the additive bias in the softmax function:

The parameter βMood, which allows for a modulation of the choice bias by the rated mood, was shared across 
all cost types. Before fitting this model, we ran simulations to verify that the βMood parameter is recoverable. We 
observed that indeed the correlation between fitted and simulated parameters is close to 1, particularly when 
using OTG rather than other sampling methods (Fig. S3). After fitting this augmented model to all observed 
choices (Fig. 5d), we tested the posterior estimates of the mood weight parameter which were significantly posi-
tive at the group level (βMood = 0.614, t(101) = 3.54, p = 6.1E−4). Finally, we compared this model to an alternative 
model in which mood is not affecting the additive choice bias but the multiplicative weight on reward. Bayes-
ian model comparison indicated that the additive model is by far more plausible than the multiplicative model 
(with an exceedance probability of 99.9%). Note that an alternative multiplicative model in which mood would 
affect the weights on costs would need four parameters and hence would not stand a chance against the addi-
tive model. Thus, model-based analyses concurred to show that choices are biased toward costly options when 
participants experience a higher mood, and towards uncostly options when in a lower mood. This additive bias 
is independent from option attributes, as if representing a prior preference for facing costs and obtaining more 
rewards, whatever these costs and rewards might be.

Discussion
In this study, we have systematically tested the effects of induced mood fluctuations on economic choices involv-
ing tradeoffs between monetary rewards and different types of costs. The induction procedure was validated by 
subjective ratings demonstrating episodes of high and low moods. Whatever the cost type (risk, delay, physical 
effort, mental effort), preferences were shifted toward more rewarded but costly options, during positive relative 
to negative mood episodes. In computational analyses, this effect was best explained by a bonus proportional to 
self-reported mood that was added to the costly option value, prior to making a decision.

To our knowledge, the different types of costs had never been gathered in a same study exploring behavioural 
effects of mood fluctuations. However, these costs had been studied separately, including risk attitude, delayed 
gratification and effort expenditure, with contrasted results (e.g.,7–9,26–31). The effects observed here were con-
sistent across cost types, highly significant and robust to test–retest in successive visits. Baseline choice rates 
were different with risk relative to the other costs, but this likely relates to a difference in the tailoring of choices 
around indifference points. A conceptual difference is that, unlike with the other costs, there is a normative way 
to integrate risk with reward (by multiplying probability and magnitude), so participants might have engaged in 
an explicit calculation of expected values for risky options. Despite these empirical and conceptual differences, 
mood effects on risky decisions were similar to those observed with delay and effort. Thus, the present results 
provide a solid generalization of the effects that were observed here and there, including in our own studies 

(3)VPE = kRew · Rew − kPE · PE2,

(4)VME = kRew · Rew − kME ·ME2,

(5)P
(

costly
)

=
1

1+ exp(−β0 − β1 · DV)
,

(6)P
(

costly
)

=
1

1+ exp(−β0 · (1+ βMood ·Mood)− β1 · DV)
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focusing on risk  taking12,15. They also help disambiguate some earlier reports using tasks in which different 
costs were confounded. For instance, in our previous studies, the risk of losing money was associated with the 
probability of failure in a sensorimotor challenge of varying difficulty, which could arguably mobilize different 
degrees of effort. The present results show that mood impacts the willingness to accept both risk and effort, even 
when properly separated in distinct decisions. Note that in the present paradigm, risk was manipulated through 
the probability of losing something, which corresponds to the common meaning of the word but not to its for-
mal definition in economics (i.e., the variance of expected outcomes). The effects of mood observed here can be 
contrasted with those of cognitive fatigue that we previously investigated using the same kind of  choices23. For 
decisions involving delay and effort, cognitive fatigue induced the effect as bad mood, with participants being 

Figure 5.  Model-based analysis of mood effects on choice behaviour. (a) Individual discount functions for 
the different cost types. Discount factors were obtained by fitting the model to all choice trials. For illustrative 
purposes, reward weight parameters have been fixed to 1, such that all individual discount functions start at 
30€ (corresponding to the large reward offered for all costly options). The black lines show the median discount 
functions over participants. (b) Observed and modelled choice functions. Dots show the observed probability 
of choosing the costly option, separately for positive (yellow) and negative (blue) episodes, as a function of 
decision value bins. Decision value (x-axis) and choice probability (grey line) were computed using the winning 
model with no mood effect. Error bars and shaded areas are inter-participant standard errors of the mean. (c) 
Correlation between choice residuals and rated mood. Dots show residuals from the choice model fit, grouped 
in 16 bins according to z-scored rated mood, with linear regression fit averaged across participants. Error bars 
and the shaded area denote inter-participant standard errors of the mean. (d) Individual mood bias parameters 
and overall distribution. A positive parameter indicates an increased tendency to choose the costly option along 
with improved mood, and vice versa for the uncostly option as mood deteriorates. Figure generated with the 
Raincloud plot  toolbox25. ***p < 0.001.
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less willing to wait and to make effort. However, contrary to mood, cognitive fatigue did not affect choices under 
risk, presumably because in this case, costly options (watching a lottery) involved no exertion of cognitive control 
(no wait, no effort).

Among the factors that enabled us to obtain such robust effects is the within-participant comparison, as 
opposed to between-group comparisons. This is a much more powerful comparison because of the high vari-
ability in economic preferences across participants. The drawback is that the manipulation may be detected, 
which would occasion some demand effects, with participants not really feeling mood changes but understand-
ing this is expected from them, after receiving feedback on their responses. However, in the present study, no 
participant reported having noticed series of easy and difficult questions, or that a wrong answer could be given 
positive feedback. Moreover, had they understood the manipulation, it remains unlikely that could have guessed 
what effect was expected on their economic choices. Note that a direct effect of feedback would rather point to 
searching compensation, meaning going for larger rewards after negative outcomes (as when gamblers chase after 
losses), which is the opposite of what was observed. Another factor that helped us demonstrating robust effects 
is the online trial generation procedure, which neutralized inter-participant variability by tailoring the choices 
presented to their idiosyncratic indifference points. This procedure avoids taking the time of a full calibration 
session and adjusts to any change of preference within the test session. It also avoids committing to any specific 
discount function, using a flexible and agnostic piecewise linear function to approximate indifference curves. 
Finally, even if it may go against an expected change in choice rate, it provides a direct readout of preference 
shift with the indifference curve. This procedure may therefore be useful to any study exploring how cost–benefit 
tradeoff varies across individuals or contexts.

The results are in line with our theory that mood flexibility is adaptive because it helps making decisions to 
forage when the expected cost–benefit tradeoff is favourable. The idea that mood flexibility may help exploit 
momentum in reward availability was initially proposed by Eldar and  colleagues18. We have elaborated on this 
idea in our own model, dubbed MAGNETO (for Mood As Global Net Expected Trade-Off), which contains a 
learning function that keeps track of the average costs and benefits associated with foraging actions, and a choice 
function that determines decisions to forage based on expected costs and  benefits22. Here, the learning function 
could not be tested, because we independently manipulated mood with feedbacks that were unrelated to the 
outcomes of chosen actions. Thus, we only tested the validity of the choice function, in which mood controls a 
global preference in favour of foraging, i.e. accepting to take risk, spend time and make effort to get more reward, 
above and beyond the specific features of possible actions. The results fulfilled the prediction that higher mood 
provides an additive bonus to more rewarded but more costly options, which manifested as both higher choice 
rate and faster decisions. Note that Eldar’s model would not make this prediction, because it assumes that mood 
(defined as position on a happiness-to-sadness dimension) only affects learning, not decision-making. Even in 
recent developments of this  model33, happiness and sadness are still assumed to affect value learning, while other 
emotions would modulate action tendencies. Whether they affect learning or decision-making, mood fluctuations 
may have been adaptive for our hunter-gatherer ancestors, because of spatial and temporal correlations in reward 
sources and action costs. These correlations stem from natural phenomena like seasonal variations, rewards 
being scarcer and foraging being more costly during cold and dark winters. In many situations of our modern 
world, however, mood triggers are unrelated to choice outcomes, as when victory in a sports competition drives 
economic risk taking. In the latter case, as in our experimental settings, mood impact on decisions may rather 
be considered as an irrational bias. Thus, the mood bias that might have been selected because it was adaptive in 
natural environments, must still operate today in a somewhat implicit and automatic manner, since it manifests 
even in artificial environments where mood triggers and choice outcomes are clearly independent. This does not 
mean that the bias cannot be counteracted, by reasoning in a more explicit manner about the likely consequences 
of choice options, or even by simply realizing that current mood may unduly influence decision making.

In our previous studies focusing on how mood fluctuations affect choice under risk, we found, using neu-
roimaging techniques (fMRI and intracerebral EEG), that positive and negative episodes were associated with 
opposite activities in specific brain regions (the ventromedial prefrontal cortex, vmPFC, and the anterior insula, 
aIns). Because the induction procedure was almost identical, similar brain regions may have mediated the effects 
of mood fluctuations on the different decisions of the present study, with baseline vmPFC activity pushing 
towards large but costly rewards and baseline aIns activity pushing towards uncostly but small rewards. Here, 
the effect of mood was additive to that of option attributes, meaning that we cannot say whether good mood 
amplifies expected rewards or reduces expected costs. This effect may be induced by baseline activity (prior to 
option display) in mood-related brain regions shifting the neural responses that signal reward and cost levels. 
Such a mechanism through which pre-choice brain activity influences the neural valuation of choice options 
has already been  reported24,34–36. By opposition to a multiplicative effect, an additive effect can be interpreted as 
mood imposing a default option, which would be selected in the absence of further information about the costs 
and benefits associated to possible actions. Indeed, in our model, the selection of costly versus uncostly action 
is entirely determined by mood when the difference in value is null, which may happen either because there is 
no information or because there is no time to process the information.

Although normal mood fluctuations may be adaptive in some circumstances, they can turn into pathologi-
cal conditions, as seen in mood  disorders37–39. Decisions in mood disorders are heavily biased by mood states, 
with manic patients engaging in ambitious risky projects and depressed patients withdrawing from most actions 
even those with little cost (according to DSM5 criteria). Thus, the behaviour of patients undergoing depressive 
and manic episodes may be captured by extreme mood bias parameters in the cost–benefit analysis that drives 
engagement in behavioural  activities22. This would accord well with reports that patients with major depressive 
disorder are less willing to exert effort for  reward21,40–42, an observation that has been specifically related to the 
enhancement of subjective effort  cost43. We note, however, that the time scale of mood disorders (several months, 
typically) is much different from that of the mood fluctuations induced in the present study (several minutes). 
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Even normal moods occurring in healthy people are usually slower to emerge and vanish (from hours to days), 
as shown by experience-sampling  methods44,45. Yet the choice bias in our study was not solely due to the last 
feedback but rather to mood rating, which integrated a series of feedbacks in the course of positive or negative 
episode. Thus, the moods induced here may be seen as intermediate cases between emotional reactions (which are 
restricted to a single trigger) and mood fluctuations (which are prolonged over longer periods). Further studies 
are needed to assess whether the mood bias also occurs at both shorter and longer time scales. Another limita-
tion is that subjective experience of positive and negative episodes was only reported in a single mood dimen-
sion, as the decomposition into valence and arousal components assessed during pilot experiments remained 
unsuccessful. Future studies will tell whether reported mood is the relevant dimension for decision making or 
whether it can be refined, for instance into happiness and sadness sub-components. Yet another limitation is 
that choices were not incentivized in the present main study. However, a randomly drawn subset of selected 
options were executed in our pilot study where we obtained similar effects of the mood manipulation, suggest-
ing that incentivisation may not be a critical factor. This makes our paradigm usable in clinical settings, where 
actual delays, efforts and bank transfers are usually difficult to implement, for both practical and ethical reasons.

Methods
The studies were approved by the Ethics Committee for Biomedical Research of the Pitié-Salpêtrière Hospital, 
where the experiments were conducted. All experiments followed the guidelines and regulations of the Paris 
Brain Institute, and were in accordance with the Declaration of Helsinki. In this section, we describe the method-
ology and materials used for the main study. We refer the reader to the Supplementary Methods S1 for a detailed 
list of differences with pilot studies 1 and 2.

Participants and procedure
Participants were recruited through an online database of candidates for behavioural experiments in the greater 
Paris area. Inclusion criteria were: being 18 years of age or older, being a French native speaker, and not having 
a history of psychiatric or neurologic disorders.

In total, 104 participants registered to take part in the main study. This study consisted of two sessions done 
during two visits scheduled approximately two weeks apart. Two participants who did not come back for the 
second session were excluded from analyses, so our sample comprises 102 subjects. Each session consisted of the 
current experiment and another independent experiment that will be reported in a separate paper. Participants 
were paid a fixed endowment of 50€ for participation in both sessions.

The study took place in the PRISME behavioural facility of the Paris Brain Institute. Participants gave 
informed consent before starting the experiment. They then viewed instructions for the choice tasks and per-
formed 8 example trials. For mental effort, participants were shown a print sample of a text page that would 
have to be copied. Subsequently, instructions for the quiz task were given and participants played 10 example 
trials. Importantly, contrary to pilot studies, the choices presented in the main study were not incentivized, and 
participants were told that, although choices were hypothetical, they should make decisions that best reflect their 
preferences and that there were no right or wrong answers. This was done to validate a paradigm that would be 
usable in the clinic, where implementation of choices is usually difficult.

Task design and apparatus
The quiz task consisted of questions that were drawn from the French version of the ‘Trivial Pursuit’ game. Quiz 
questions were sorted according to the rate of correct answers given by participants in a previous  study15 and 
then divided into categories of relatively easy, intermediate, or relatively hard questions.

In every trial, a quiz question was presented for 3.5 s, followed by 4 possible answers from which one had 
to be selected within 4.5 s. Hard, easy and intermediate questions were respectively presented during negative 
episodes, positive episodes and transitions between episodes. The 1 s feedback screen showed a smiling emoji 
accompanied by a cheerful ping sound (positive feedback) or a frowning emoji accompanied by an unpleasant 
buzz sound (negative feedback). A player always received positive feedback when answering correctly, and 
feedback was always negative when the player did not answer within the time limit. Feedback following an incor-
rect answer depended on the bias, which could be of 0%, 25%, or 50% according to the experimental condition 
(negative episode, transition, positive episode, respectively). After receiving feedback, participants made one 
economic decision between a small uncostly reward and 30€ associated with one of 4 possible costs. The first type 
of cost featured a delay until payment of up to one year, visualized by a calendar with the number of days to wait 
coloured in red. The second type featured a risk to lose 10€ if the participant chose to enter a lottery, symbolized 
by a wheel-of-fortune where the red/green shaded area represented the probability of losing a certain amount / 
winning 30€. The third type featured a physical effort in the form of up to 12 flights of stairs to climb. The fourth 
type featured pages to copy from a text in a non-existent language, each page containing 25 lines. The location 
on screen (left or right) of the costly option was counterbalanced across trials. Each cost type was assigned to 
one of four consecutive trials, the order being pseudo-randomized such that the same cost could not appear 
twice in a row. A trial ended with participants rating their mood, by placing a cursor along a continuous scale 
ranging from “bad mood” to “good mood”. In French, the question was “Comment je me sens?” and the labels at 
the scale extremities were “de mauvaise humeur” and “de bonne humeur”.

The experiment was conducted on computers with tactile screens, so any selection of quiz answers, choice 
options, or mood level was done by the touching the appropriate location with the index finger. The task was 
coded in MATLAB using the  PsychToolbox46.
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Online trial generation
In order to reveal the impact of mood on decision-making, we needed to present choices for which the preference 
of the participant was uncertain. To save the time of a calibration session, and to adjust for variations within the 
test session, we used online trial generation (OTG, see https:// github. com/ MBB- team/ OTG). This procedure 
updates indifference curves based on observed choices and uses it to select options for upcoming choices.

Indifference map
To avoid committing to any a priori discount function that might fail to capture choice data or to generalize 
across tasks, we used an agnostic model that, in principle, can approximate any shape, under the assumption that 
the subjective value of reward declines continuously as the cost increases (Fig. 3a). The cost range was divided 
into 5 bins, equally spaced between 0% (no cost) and 100% (maximum cost). The subjective value function was 
described using a piecewise linear model, where (i) discounted value is assumed to decrease linearly within cost 
bins, and (ii) discounted value at edges of a given cost bin is constrained to match that of adjacent bins. It is 
therefore defined by 5 slope parameters k1, k2, . . . , k5 . For example, in bin 1 where cost C ∈]0, 0.2] , the expres-
sions for the local linear functions are as follows:

In our design, options for which C > 0 are associated with a fixed maximum reward (equal to 30€ in practice), 
which is by definition the 100% reward (R = 1). Options for which C = 0 are the small rewards noted r (with 
r < 1). Indifference points (for which costly and uncostly options have the same value) are therefore defined by 
an equivalence between small reward r and cost level C, which is for bin 1:

Here, for the first bin, the intercept is 1 − b0, but in other bins, the intercept of the local linear function must 
be calculated at the bin edges (see the Supplementary Information S1 for full mathematical details). Note that b0, 
the intercept of the first bin, corresponds to the bonus added to uncostly options, so it is equivalent to the bias 
of the softmax function used in the choice model described below. The free parameters were constrained to be 
positive and fitted with prior means of 1 for slopes ki and on 0 for b0.

For each point of the space defined by the small reward and cost level, we modelled the probability P of a costly 
choice with a softmax function (as expressed in Eq. 5). This enables us to derive an indifference score, which we 
define as the distance between the modelled choice probability and 50%, normalized to span the [0,1] range:

In turn, the expected indifference of any combination of reward and cost can be scored every time a new 
choice is observed (Fig. 3b). This provides a map of expected indifference on a 50 × 50 grid that combines cost 
levels (from 2 to 100%) and small rewards (from 0.33 to 99.67%, i.e. from 0.10€ to 29.90€).

Option selection
The indifference map was used to select the options presented in the next choice trial. First, a probability density 
distribution was generated by vertically summing indifference for each cost level, and normalizing across the 50 
obtained sums. The next cost level was selected by randomly sampling from this distribution, thus, cost levels 
featuring more combinations close to indifference were more likely to be selected. Then, the small reward for the 
uncostly option was selected such that it equals the selected cost combined with the big reward (30€), given the 
current estimate of the indifference curve. Finally, the two selected options were presented for the participant 
to make a choice.

A Bayesian parameter inference scheme was used to update the parameter estimates of the indifference curves 
based on the observed choices (see the Supplementary Information S1 for relevant mathematical details). As the 
experiment proceeds, parameter estimates get more precise because more trials are included. However, the OTG 
algorithm must allow for changes in preference over time, which could be caused by moods. For this reason, we 
only included the 20 most recent choices as observations when fitting the model. Conversely, to allow for a mini-
mum of observations, the online parameter estimation started only after the first three choices had been made.

OTG performance
Before adopting OTG, we compared its performance to that of alternative sampling methods using numerical 
simulations (Fig. S3a). The first alternative to OTG was a predefined square grid sampling over the small reward 
x cost level space, using a lattice of 9, 16, 25, 36, or 64 trials, the latter corresponding to the total amount of 
choices per type in the main experiment. Since including more trials enhances model fit, independent of their 
location in the reward/cost space, we introduced a second alternative, which consists in randomly sampling 
more or less reward/cost combinations. This serves as a benchmark experimental design for later performance 
comparisons. We decided to run a number of simulations that was three orders of magnitude greater than the 
number of free  parameters13, so the analysis comprised  133 = 2197 simulations. To reproduce the properties of 
our experimental data, each simulation featured a different set of parameters that were randomly drawn from 
the empirical distribution of parameter values in the experimental population. At each trial, the three pairs of 

(7)Vuncostly = r + b0

(8)Vcostly = 1− k1 · C

(9)r = 1− b0 − k1 · C

(10)Indifference =
0.5− |P − 0.5|

0.5
.

https://github.com/MBB-team/OTG
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differentially sampled options were presented to a dummy agent that behaved according to the winning choice 
model [see Eqs. (11)–(18) below]. The trial-by-trial simulated choice sequence then entered a model inversion 
procedure implemented in the VBA  toolbox26. Post-hoc choice predictions were then used to derive the so-
called balanced accuracy (by averaging the predictive accuracy obtained for costly and uncostly choices). This 
goodness-of-fit measure was the first performance metric used for comparison between sampling procedures 
(Fig. S3b, left). OTG outperformed random sampling for all numbers of included trials, and did better than 
grid sampling whenever the lattice contained 16 trials or more. The second metric for comparison between 
sampling methods was the posterior variance of parameter estimates (Fig. S3b, centre). The reasoning here is 
that procedures yielding lower posterior variance effectively provide more reliable parameter estimates. Again, 
OTG outperformed random sampling at any number of included trials, and did better than grid sampling after 
25 or more trials were included. A third performance metric was the recoverability of parameters of interest 
(Fig. S3b, right). In particular, our main parameter of interest was the bias that mood exerted on choices. We thus 
compared the correlation between simulated and recovered βMood between sampling methods. This was the 14th 
free parameter, so we ran  143 = 2744 simulations. Again, the OTG procedure outperformed the other sampling 
methods, showing better recoverability, no matter how many trials were included.

Data collection
Model-free dependent variables were observed choice (costly or uncostly) and response time (RT). Trials with 
extreme RT were excluded (8.9% per participant in total), keeping only trials with 0.75 s < RT < 10 s and within the 
median ± 3 SD interval. The session number (categorical variable) and trial number within session (continuous 
variable) were regressed out. To better gauge the momentary willingness to accept costly options, we calculated at 
each trial the area under the curve (AUC) of indifference estimated by the OTG procedure. AUC was computed 
by applying the trapezoidal rule to each of the 50 cost levels for which the equivalent small reward was larger than 
zero. AUC was then z-scored per session and interpolated separately for each cost type (because only one cost 
type was presented at every trial). Finally, episode trial effects and first-episode order effects were regressed out.

Choice rate, corrected RT, and AUC were then compared between positive and negative episodes using paired 
two-tailed t-tests at the group level. Regression models meant to explain dependent measures (choice or AUC) 
with manipulated factors (feedback or mood) were estimated at the individual level and regression estimates 
were then compared to zero at the group level using one-sample two-tailed t-tests.

Choice model selection and comparison
In the definition of a model space for the four types of costs, we started with discount functions that generate 
subjective values. For risk discounting, we chose a standard expected value model, with an additive cost term 
scaled to the probability of losing. For delay discounting, we opted for an exponential decay function, because 
it was shown to best fit inter-temporal choices in our previous  work23,47 when combined with an additive bonus 
for immediate rewards. For effort discounting (both physical and mental), we selected a parabolic decay model 
that has become consensual in recent  literature48–50.

These functions had only one parameter, their discount factor k, a weight parameter that was specific to the 
cost type (because risk, delay and effort levels were expressed in different units). The first extension of these 
discount functions was the inclusion of a weight on reward kRew that was shared across all cost types (because 
reward was always a monetary amount in euros). The second extension was the inclusion of power parameters γ 
on the different costs, in order to capture more extreme curvatures of the discount function. Note that standard 
discounting models simply reduce to fixing the power to 1 for delay and risk discounting, and to 2 for mental 
and effort discounting.

To generate choice probabilities from decision values, we used a softmax function with an inverse choice tem-
perature β1 (controlling choice consistency), and an additive bias term β0 (controlling the attraction of uncostly 
rewards). Both parameters could either be shared across cost types (one unique parameter), or specific to each 
cost type (4 different parameters), or absent altogether.

When including all parameters, the extended discount and choice functions were the following:
For delay:

For risk (of losing L):

For physical effort:

For mental effort:

(11)VD = kRew · Rew · exp
(

−kD · DγD
)

(12)P
(

delayed
)

=
(

1+ exp(−β1,D
(

VD,costly − VD,uncostly

)

− β0,D)
)

−1

(13)VR = kRew · Rew · P − kR · L · (1− P)γR

(14)P
(

risky
)

=
(

1+ exp(−β1,R
(
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)

− β0,R)
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−1

(15)VPE = kRew · Rew − kPE · PEγPE

(16)P
(

effortful
)

=
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The full model space contained 36 different combinations that are listed in Table S4.
Models were inverted using the Variational Bayesian Analysis (VBA) toolbox (available at https:// mbb- team. 

github. io/ VBA- toolb ox). It relies on a variational approach to Bayesian inference, thereby being orders of mag-
nitude more efficient than sampling-based  approaches26. Inputs to VBA were prior parameter distributions, 
trial-by-trial option features and choices. The weights k on reward and costs, the power parameters γ and inverse 
choice temperatures β1 were constrained to be positive and their prior distributions were centred on 1. Choice 
bias β0 could be any real number and its prior distribution was centred on 0. Outputs from VBA were the pos-
terior distribution over parameter estimates and model evidence, which provides a tradeoff between accuracy 
(goodness of fit) and complexity (number of free parameters).

For Bayesian model  selection51,52, group-level random-effects analyses were applied to individual log-model 
evidence, with the underlying assumption that different models could be used by different participants. These 
analyses provided the expected frequency with which each model prevails in the population, as well as the exceed-
ance probability that quantifies the probability that a given model is more frequent than all the others within the 
considered model set. The winning model (see description in main text), from the comparison between the 36 
possibilities, reached an exceedance probability of 94% (see Table S4).

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials S1. The raw data (MATLAB datasets) can be provided by Roeland Heerema pending scientific review 
and a completed material transfer agreement. Requests for the data should be submitted to: mathias.pessiglione@
gmail.com. The toolbox used for online trial generation can be accessed at https:// github. com/ MBB- team/ OTG.
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