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Abstract

A standard view in neuroeconomics is that to make a choice, an agent first assigns subjec-

tive values to available options, and then compares them to select the best. In choice tasks,

these cardinal values are typically inferred from the preference expressed by subjects

between options presented in pairs. Alternatively, cardinal values can be directly elicited by

asking subjects to place a cursor on an analog scale (rating task) or to exert a force on a

power grip (effort task). These tasks can vary in many respects: they can notably be more

or less costly and consequential. Here, we compared the value functions elicited by choice,

rating and effort tasks on options composed of two monetary amounts: one for the subject

(gain) and one for a charity (donation). Bayesian model selection showed that despite

important differences between the three tasks, they all elicited a same value function, with

similar weighting of gain and donation, but variable concavity. Moreover, value functions

elicited by the different tasks could predict choices with equivalent accuracy. Our finding

therefore suggests that comparable value functions can account for various motivated

behaviors, beyond economic choice. Nevertheless, we report slight differences in the

computational efficiency of parameter estimation that may guide the design of future

studies.

Author summary

In economic decision theory, value is a construct that provides a metric to compare

options: agents are likely to select options leading to high-value outcomes. In neurosci-

ence, different behavioral tasks have been used to elicit the subjective values of potential

outcomes, notably rating tasks, which demand an explicit value judgment on the outcome,
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and effort tasks, which demand an energetic expense (in order to increase outcome proba-

bility). However, it remains unclear whether the values elicited by these tasks are the same

as the values that drive choices. Indeed, it has been argued that they involve different costs

and consequences for the agent. Here, we compared value models that could account for

behavioral responses in choice, rating and effort tasks involving the same set of options,

which combined a monetary gain for the participant and a donation to a charity. We

found that the most plausible model was that a same value function, with a similar selfish-

ness parameter (relative weight on gain and donation), generated the responses in all

three tasks. This finding strengthens the notion of value as a general explanation of moti-

vated behaviors, beyond standard economic choice.

Introduction

Value (or utility) functions have been defined to account for preferences revealed in choice

tasks [1]. One basic principle is that if an agent prefers A over B, then for this agent the value

of A is higher than the value of B. Assuming basic axioms of expected utility theory, cardinal

functions have been described, such that option values can be positioned on a numeric scale

[2]. Cardinal values rely on the notion that choice probability depends on the distance between

option values, as well as on their distance from a reference point [3]. Value functions can be

parameterized when choice options are combinations of objective quantities, e.g., the probabil-

ity and magnitude of monetary payoff. The parameters can then be estimated through fitting

procedures that maximize the likelihood of observed choices under the valuation model. Fit-

ting choices involves specifying a function relating choice probability to option values, gener-

ally a softmax rule [4]. Thus, most studies have used choice data to infer functions that assign

cardinal values to any possible option.

Alternatively, a more direct approach has been used in the neuroeconomics literature,

using behavioral tasks in which subjects assign cardinal values to available options, instead of

inferring value functions from their choices. One possibility is to ask subjects to rate on analog

scale the desirability (or likeability) of the outcomes associated to the different options [5].

Another possibility is to ask subjects to express the maximal cost (e.g. price, effort or delay)

that they are willing to endure in order to obtain these outcomes [6, 7]. The aim of the present

study was to compare the value functions derived from these direct cardinal measures with the

value functions derived from fitting choice data. We selected, in addition to a standard binary

choice task where subjects state their preference between two options, a subjective rating task

where subjects score the desirability of every possible outcome and an effort production task

where the probability of obtaining the outcome depends on the force produced with a hand-

grip. Standard models of behavior in these tasks suggest that ratings and forces can be taken as

direct measures of the subjective outcome values that drive choices (see Methods).

However, there are a priori reasons why the value functions elicited by the different tasks

should differ in their form or in their parameters. In our perspective, the key difference

between tasks is the nature of the cost. In choice tasks, the response entails an opportunity

cost, corresponding to the value of the non-selected option [8]. The response is therefore

based on the value difference between the two possible outcomes, which is often called deci-

sion value. As the motor response is generally similar for the two options, there is no need to

consider action costs. In effort tasks, the response is associated with a specific cost due to

energy expenditure, which may be signaled through muscular pain. The response therefore

aims at maximizing the net value, i.e. the trade-off between outcome value and action cost [9].

Valuation models of choice, rating and effort
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In rating tasks, the variation in action cost across the possible positions on the scale is usually

negligible, although the extremes may be longer to reach. Thus, the response should be a direct

expression of outcome value. As decision values, net values and outcome values may be com-

puted by different brain systems, they may follow different functions [10].

In addition, there is a cost that may be common to all behavioral tasks, which is social rep-

robation. Some responses may be more socially acceptable than others, particularly if moral

considerations are involved [11]. This social cost may be more salient in rating tasks, which

have no other consequences and can therefore be considered as ‘hypothetical’ decisions. By

opposition, choice and effort tasks are typically consequential: they determine the outcome,

either deterministically or probabilistically, and therefore involve ‘real’ decisions. Hypothetical

and real decisions have been compared in a number of studies using various tasks [12–16],

with contrasted results and no proper model comparison. Yet it may seem intuitive that sub-

jects in rating tasks are more likely to pretend having values they do not have, for reputation

concerns, because there is no obvious costly consequence. To assess this potential difference

between tasks we used options that combined money for the subject (gain) and money for a

charity (donation), with the aim of triggering moral dilemma.

Also, each behavioral task may be susceptible to specific artifacts. For instance, the rating

scale is somewhat arbitrary, and may yield distortions of value functions due to framing or

anchoring phenomena [17], particularly if subjects are not familiar with the range of values

spanned in the set of options. Effort exertion, between zero and maximal force, may be less

arbitrary but susceptible to fatigue, which may increase with the number of performed trials

and influence effort cost, and hence the values expressed by participants [18].

In the present study, we compared the value functions elicited by the different tasks for a

same set of composite outcomes, each combining gain and donation. We found that the same

valuation model provide the best fit of behavior in the three tasks, with slight differences in

parameter estimates.

Results

Model-free analysis of behavioral responses

Subjects (n = 19) participated in three tasks aimed at measuring subjective values of bi-dimen-

sional outcomes composed of one gain for themselves and one donation for a charity organiza-

tion they selected prior to the experiment (Fig 1, top). In the rating task, participants rated

how much they would like to obtain the composite outcome using a scale graduated from 0 to

10. The feedback was probabilistic and they obtained the outcome in 70% of the trials, irre-

spective of their ratings, which were therefore not consequential. The probabilistic contin-

gency was adjusted so as to match that of the effort task. In the force task, subjects had to

squeeze a handgrip knowing that the chance to win the outcome was determined by the ratio

of the force they produced during the trial and their maximal force measured beforehand.

Note that previous experiments in the lab using the grip task with similar range of incentives

showed that subjects produce on average about 70% of their maximal force [19]. In the choice

task, participants had to choose between two composite options, the selected outcome being

obtained in 70% of trials. The choice task followed an adaptive design [20] in which options

were proposed so as to optimize the parameterization of an a priori value function (linear inte-

gration of gain and donation with their interaction).

As expected, explicit ratings, forces produced and subjective values inferred from choices

all increased with incentives, i.e. with both gain and donation (Fig 1, bottom). Before going

into more sophisticated models, we conducted linear regressions (for ratings and forces) or

logistic regression (for choices) against the two main factors (gain G and donation D) and

Valuation models of choice, rating and effort
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their interaction. Regression estimates obtained for main factors were significantly different

from zero in all cases: in the rating task (βR(G) = 0.07±6.10−3, t(18) = 11.5, p = 1.10−9; βR(D) =

0.06±7.10−3, t(18) = 8.2, p = 1.10−7), in the force task (βF(G) = 0.05±6.10−3, t(18) = 8.5,

p = 1.10−7; βF(G) = 0.05±6.10−3, t(18) = 7.2, p = 9.10−7) and in the choice task (βC(G) = 0.16

±0.03, t(18) = 5.6, p = 2.10−5; βC(G) = 0.12±0.02, t(18) = 5.4, p = 4.10−5). Interaction terms

were significant for the rating and force tasks but not for the choice task (βR(G�D) = -2.10–4

±9.10−5, t(18) = -2.7, p = 0.01; βF(G�D) = -3.10–5±1.10−5, t(18) = -2.6, p = 0.02; βC(G�D) =

1.10–5±2.10−4, t(18) = 0.1, p = 0.95). In none of the tasks did we find a significant difference

Fig 1. Task design and behavioral results. A. From top to bottom, successive screen shots of example trials are shown with their duration for the

three tasks (left: rating task, middle: force task, right: choice task). Every trial started with a fixation cross. In the force and rating tasks, a single

composite proposition, with a gain G for the subject (YOU) and donation D for the charity organization (ORG) was displayed on the screen. Then a scale

(for rating) and a thermometer (for force) respectively appeared on the screen, noticing subjects that it was time for providing a response. After response

completion (rating or force), feedback on whether the proposition was won or lost was displayed. The probability of winning was fixated to 70% in the

rating task and determined by the percentage of maximal force produced in the force task. A loss meant no money for both the subject and the charity. In

the choice task, two composite options were displayed and choice was triggered by switching ‘or’ into ‘?’. Feedback was winning the chosen option in

70% of the trials, and nothing in the remaining 30%. B. Average ratings (left), forces (right) and values inferred from choices (right) are shown as

functions of the amount of gain and donation. Cold to hot colors indicate low to high values. The value function used to fit the choices was the a priori

function that served to optimize the design (linear model with interaction).

https://doi.org/10.1371/journal.pcbi.1005848.g001
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between the weights of gain and for donation, although there was a trend in favor of selfishness

(R: t(18) = 1.79, p = 0.089; F: t(18) = 1.10, p = 0.29; C: t(18) = 1.70, p = 0.11).

We also regressed the residuals of this regression against trial and session number, in order

to test for fatigue effects. As none of these tests was significant (all p>0.1), we did not include

any parameter accounting for fatigue in our computational models. Finally, we compared the

distribution of forces and ratings, irrespective of gain and donation. As uncertainty was con-

trolled by force production in the effort task, the distribution could be affected by risk attitude,

relatively to the rating task in which uncertainty was constant. Indeed, subjects should avoid

medium forces, if they are risk averse, or on the contrary favor them, if they are risk seeking.

We thus fitted a second-order polynomial function to individual distributions of forces and

ratings. The coefficients of quadratic regressors were significant for both tasks (F: b =

-0.31 ± 0.11, t(18) = -2.75 p = 0.013, R: b = -0.21 ± 0.06, t(18) = -3.34, p = 4.10–3), with no sig-

nificant difference between tasks (t(18) = -0.85, p = 0.41). There was therefore no evidence that

risk attitude created a difference between forces and ratings.

However, these model-free analyses do not provide any formal conclusion about how value

functions differ across tasks, so we now turn to a model-based Bayesian data analysis.

Bayesian comparison of valuation models

In order to further investigate how changing the elicitation paradigm could affect the subjec-

tive value of potential outcomes, we defined a set of twelve value functions that could explain

the observed behavior in each task (see Methods). These value functions represent different

ways of combining the two dimensions (gain and donation) composing the outcomes pro-

posed in the tasks. They were used to generate forces and ratings with linear scaling (with

slope and intercept parameters) and choices with logistic projection (softmax function with

temperature parameter). All value functions were fitted on behavioral responses for every sub-

ject and task using Variational Bayesian Analysis (VBA) [21, 22]. The explained variance (aver-

aged across subjects) was comprised between 43 and 70% in the force task, between 57 and

85% in the rating task and between 45 and 85% in the choice task. These results show that, for

all three tasks, there were important differences in the quality of fit between value functions,

which we compare below.

Comparison of value functions. First, using group-level Bayesian model comparison [22,

23], we examined whether behavior in the three tasks could be explained by the same value

function. We found that the family of models with the same value function for the three tasks

is far more plausible than the family of models with different value functions (Ef = 0.95,

Xp = 1, Fig 2A). This indicates that there is no qualitative difference between the value func-

tions underlying behavior in the three tasks. In turn, this enabled us to pool model evidences

over the three tasks, and identify the most likely model (if any) for the common underlying

value function.

Second, we found that the value function called ‘Constant Elasticity of Substitution’ (CES,

see Methods) provides the best account of behavioral responses in the three tasks, as shown by

the model comparison performed inside the ‘same’ family: Ef = 0.61, Xp = 1, Fig 2A). In what

follows, we ask whether there are quantitative differences between value functions elicited by

the three tasks, as could be captured by the CES fitted parameters.

Comparison of free parameters. The CES function is characterized by two main parame-

ters: a "selfishness" parameter α comprised between 0 and 1 (α closer to 1 denotes more selfish

behavior) and a concavity parameter δ (δ>1 indicates more sensitivity to high values in a com-

posite proposition). We thus compared the fitted parameters of the CES model between tasks

using ANOVA followed by t-tests. We only found a difference for the concavity parameter (F

Valuation models of choice, rating and effort
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Fig 2. Comparison of value functions and their parameters. A. Comparison of value functions underlying behavior in the three tasks. Left:

Estimated frequency for the family of models in which the three tasks are explained by the same value function and the family of models using

different value functions. Right: Estimated frequencies obtained for the twelve models (value functions) belonging to the ‘same’ family. The winner

is CES function (model 12), see equation on the graph, with V(G,D) the value of gain G and donation D, α the selfishness parameter and δ the

concavity parameter. Dashed lines indicate chance levels (one over the number of models) B. Comparison of selfishness parameter across tasks.

Left: Mean parameter estimates in the three tasks (F, R and C) separately and in the three tasks together (All). The dashed line (α = 0.5) indicates

no bias toward one or the other dimension (gain or donation). Error bars indicates S.E.M. Middle: Estimated frequencies of models including one

single selfishness parameter for the three tasks (=), three different selfishness parameters (~), or only one different from the two other (F~, R~,

C~, with ‘X~’ standing for ‘task with a different parameter’). Dashed line indicates chance level. Right: Correlation of selfishness parameters

between choice and force tasks (red) and between choice and rating tasks (green) across subjects. C. Same analysis as in B but for the concavity

parameter. The dashed line in the left graph (δ = 1) corresponds to the linear model. Stars indicate significant differences between tasks.

https://doi.org/10.1371/journal.pcbi.1005848.g002
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(2,54) = 3.72, p = 0.03; Fig 2C). More precisely, the concavity parameter in the choice task was

significantly lower than in the two other tasks (δF = 1.98±0.31; δR = 1.60±0.20; δC = 1.10±0.14;

δF vs δR: t(19) = 1.55, p = 0.14; δF vs δC: t(19) = 2.9, p = 9.10−3; δR vs δC: t(19) = 2.56, p = 0.02).

There was no significant difference in the selfishness parameter (F(2,54) = 0.09, p = 0.91; Fig

2B) which shows similar overweighting of gain relative to donation (αC = 0.58±0.04, αF = 0.56

±0.05, αR = 0.58±0.05). Nevertheless, since the absence of significance does not provide evi-

dence for a null difference, we assessed this particular question with another Bayesian model

comparison.

For each subject, we pooled the data acquired in the three tasks prior to fitting five distinct

CES models: a model including one single selfishness parameter for all the tasks, a model

including three different selfishness parameters, and all the intermediate variants (αF =

αR6¼αC; αF = αC6¼αR; αR = αC6¼αF; see Methods). According to group-level Bayesian model

comparison, the model with a unique selfishness parameter provided the best explanation to

the pooled data (Ef = 0.52, Xp = 0.97, Fig 2B). We also found that the ensuing common selfish-

ness parameter is significantly favoring the individualistic gain in the proposition (α = 0.58

±0.04, t(19) = 2.16, p = 0.044). We also ran a similar analysis on the concavity parameter to

assess whether the rating and force tasks could be explained by a unique parameter since the

difference between them was not deemed significant. The winning model (Ef = 0.46,

Xp = 0.92, Fig 2C) was the model with task-specific concavity parameters. This suggests that

despite the absence of significant difference between δF and δR on average, the data are better

explained with different parameter values.

Those results were confirmed by the significant correlations across subjects found in all

pairs of tasks for the selfishness parameter (force and rating: r = 0.90, p = 1.10−7; force and

choice: r = 0.64, p = 3.10−3; rating and choice: r = 0.65, p = 2.10−3), contrasting with the

absence of significant correlation for the concavity parameter (Fig 2B and 2C, right panels).

Moreover, we also compared the rankings on selfishness that the different tasks provided. We

found significant correlations between all tasks taken two by two (force and rating: r = 0.80,

p = 5.10−5; force and choice: r = 0.72, p = 5.10−4; rating and choice: r = 0.64, p = 3.10−3). Similar

correlation coefficients and p-values were found with rankings of parameters, suggesting that

the same subjects were identified as least or most selfish by the different tasks.

Taken together, these analyses allow us to conclude that the tasks used to access subjective

values had an impact on the concavity of the value function but not on the weight given to the

attributes.

Comparison of estimation efficiency. Finally, we asked which task actually provides the

most efficient estimation of the underlying value function, if any.

To begin with, we assessed to what extent choices could be predicted from the other mea-

sures. Thus, we compared the balanced accuracy predicted by the values computed from the

rating and the force tasks (same CES function with different selfishness and concavity parame-

ters). We found no significant difference between them (t(19) = 0.82, p = 0.42), with balanced

accuracy for each of them (Force: 77±3%; Rating: 78±2%) close to the balanced accuracy

obtained with the value function inferred from choices (84±2%). Moreover, when fitting a

logistic regression on choices with the rating and force values, we could not find any signifi-

cant difference in the temperature parameter (βF = 1.13±0.46; βR = 0.86±0.40; t(19) = 1.36,

p = 0.19). This suggests that rating and force measures were equally good to predict choices

(Fig 3A and 3B).

Then, in order to further compare the efficiency of value estimation between tasks, we

examined goodness-of-fit, task duration, and number of trials.

First, we compared the goodness-of-fit between tasks (Fig 3C). We found that the CES

function provided a better fit for the rating and choice tasks compared to the force task (R2
F =

Valuation models of choice, rating and effort
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0.70±0.04; R2
R = 0.85±0.04; R2

C = 0.84±0.02; R2
F vs R2

R: t(19) = -4.78, p = 1.10−4; R2
F vs R2

C: t

(19) = -3.87, p = 1.10−3; R2
c vs R2

R: t(19) = -0.09, p = 0.93). There was no significant difference

of goodness-of-fit between the choice and the rating task. This suggests that the force data

were noisier than the two other measures.

Second, we compared the time needed to provide an answer in the rating and force tasks

(Fig 3D). We did not include the choice task in this analysis because of the difference in the

timing of options presentation. Moreover, the number of options to consider in the choice

task is not the same, which would obviously bias the comparison. We found that response

time in the force task was shorter than in the rating task (RTF = 2.24±0.12 sec; RTR = 3.59

±0.16 sec; t(19) = 6.01; p = 1.10−5). Thus, given the same amount of trials, the force task was

overall shorter to run than the rating task.

Third, we compared the number of trials needed in each task to yield efficient parameter

estimates (Fig 3E). Recall that, in contradiction with the choice task, no adaptive design proce-

dure was used for both force and rating tasks in our design (a fixed number of 121 options

were presented in both cases). Nevertheless, one can derive a pseudo "convergence" measure

for both tasks, in the aim of guessing what the amount of trials would have been, if one had

used an adaptive design procedure. Note that the same approach can be taken post-hoc on the

choice task, to yield a fair comparison. We thus derived such a convergence measure (see

Fig 3. Comparison of estimation efficiency. A. Proportion of choices according to the difference between option values

computed with the CES value function inferred either from the force task (red) or the rating task (green). Observed choices

(circles) were fitted using logistic regression (continuous lines). Inset represents temperature estimates from logistic fits. B.

Balanced accuracy according to the CES value function inferred from the force (red) and rating (green) tasks. C. Coefficient

of determination R2 for the fit of each task (Force, Rating and Choice). D. Response time in force and rating tasks. E.

Convergence measure according to trial number (with optimized trial order) in the force (red), rating (green) and choice (blue)

tasks. Error bars indicate S.E.M. Stars indicate significant differences between two tasks.

https://doi.org/10.1371/journal.pcbi.1005848.g003
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Methods) to determine the trial number after which the marginal gain was below our conver-

gence criterion of 5%. This convergence measure was computed either on the sequence of tri-

als as it unfolded during the experiment ("native order"), or by reordering the trials according

to how informative they were ("optimized order"). Although the trend was for a reduction

with the optimized order, we found no significant difference between the two estimations,

neither in the rating task (native: 46±4 trials, optimized: 42±2 trials, difference: t(18) = 0.81,

p = 0.43), nor in the force task, (native: 57±2trials, optimized: 57±3 trials, difference: t(18) =

0.08, p = 0.94) and choice task (native: 54±8 trials, optimized: 60±7 trials, difference: t(18) =

0.51, p = 0.62). With the optimized order, we found a significant difference of the pseudo-

convergence trial number only between the rating and force tasks (γR vs γF: t(18) = 5.57,

p = 4.10−5; γR vs γC: t(18) = 0.12, p = 0.9; γC vs γF: t(18) = 1.75, p = 0.10). Without order opti-

mization, there was no significant difference (all p>0.05). The trend was nonetheless that

the force task required more trials than the rating task for converging on parameter estima-

tion, as observed with the optimized order.

Discussion

In this study, we showed that three tasks varying on several features elicited the same value

function accounting for participants’ behavior. Moreover, the most critical parameter, pre-

cisely the relative weighting of gain and donation (selfishness), was similar in the three tasks.

However, we found some differences in the concavity of value functions. In addition, the dif-

ferent tasks presented practical advantages and disadvantages that should be taken into

account when selecting a particular elicitation procedure.

We showed with a Bayesian model comparison that the same value function could account

for the three types of behavior. It is interesting to note that Bayesian inference enables conclud-

ing in favor of the null hypothesis, which cannot be formally validated from an absence of sig-

nificant difference in classical statistical inference. The null hypothesis (no difference in value

function) is consistent with subjects maximizing simple net utility functions defined as the dif-

ference between expected outcome values in the choice task, the expected outcome value

minus a quadratic effort cost in the effort task, and the similarity of overt rating and covert

judgment in the rating task (see Methods). This means that the computational processes used

to generate the different behaviors (choice, rating, force) from underlying outcome values

have no backward influence on these values. As a consequence, the results reported in the neu-

roeconomic literature using the different tasks, regarding the brain valuation system in partic-

ular, can be directly compared.

The winning value function, called ‘Constant Elasticity of Substitution’ [24], has been

shown to provide a good account of choices made by participants in other experiments that

involved sharing money with others [25], which is consistent with the present results. It has

the advantage of simplicity, with only two parameters: one controlling the relative weighting

of outcome dimensions (here, the selfishness parameter) and one controlling the interaction

between dimensions (the concavity parameter). Note that the other value functions used in

the model comparison also provided a satisfying fit of behavioral data, capturing the relative

sensitivity to gain and donation. Thus, we do not wish to make a strong claim that the CES

function should be used in any task assessing altruistic behavior. We simply used it in the

following because it was the best candidate function to investigate the integration of out-

come dimensions.

The three tasks not only shared the same value function, but also elicited similar selfishness

parameters. Thus, the differences in the consequentiality of the behavioral response, and in the

nature of associated costs, did not impact the effective weights assigned to the gain and
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donation dimensions. This may come as a surprise, given that exhibiting altruism comes for

free (with no cost) in the rating task but not in the choice task (where there is an opportunity

cost) or the force task (where there is an effort cost). This result suggests some stability across

elicitation procedures in how dimensions are weighted. It is consistent with previous studies

reporting similar values for hypothetical and real decisions [12–14]. In our data, the selfishness

parameter denoted a preference for gain over donation, which is consistent with what has

been observed in studies investigating altruism [26, 27]. Yet we note that our participants

appeared less selfish, possibly because we asked them to select a NGO which they would give

money to, instead of asking them to share money with another participant who they did not

know.

We acknowledge that our demonstration of a same value function for different tasks suffers

from some limitations. First, the range of costs involved in the choice and effort tasks remained

reasonable. It is likely that costs should be integrated in the value function if they get more

extreme (say if winning one euro for a charity demands days of work). Second, the stability of

elicited value functions was assessed within subjects, which may favor consistency in behav-

ioral responses. Results might have been more variable had we tested separate groups of sub-

jects on the different tasks or the same subjects on different days. Indeed, the measures might

be differentially sensitive to states such as mood or fatigue, which were not controlled in our

design. Third, our conclusion could be specific to the particular dimensions that composed the

outcomes presented in our tasks. Further experiments would be needed to generalize the result

to other multi-attribute options, as in for example risky or inter-temporal choice, or to more

natural multidimensional options such as food items.

Even if the same value function and the same selfishness parameter could explain the

behavior in the three tasks, we found a significant difference between tasks in the concavity

parameter. Indeed, the choice task did not reveal any concavity, indicating no interaction

between dimensions, whereas the force task, and to a lesser extent the rating task, revealed a

concavity, denoting a biased sensitivity to high monetary amounts, irrespective of the receiver.

It remains difficult to conclude whether the concavity seen in rating and force tasks denotes an

artifactual distortion of the actual value function or a better sensitivity to actual values, com-

pared to the choice task which is more complex (with four numbers to be integrated). Indeed,

concavity in the effort task may be higher because the effort cost function is not quadratic, as

we assumed for the sake of simplicity. One may also speculate that high amounts trigger

arousal responses, which may affect effort production but choice or rating. Alternatively, con-

cavity in the choice task may be absent because in most cases, there are high amounts in both

options. Note that choice options in our design were selected to optimize a value function (lin-

ear with interaction) where there was no concavity parameter. Nevertheless, even if no concav-

ity was observed on average in the choice task, the model with a concavity parameter was

favored by the Bayesian selection. This means that some subjects were better fitted with con-

cave and others with convex value functions. This inter-subject variability possibly reflects dif-

ferences in the sensitivity to equity (options with similar amount for them and for the charity).

Independently of the elicited value function, we assessed how the tasks differed in terms of

precision and speed of parameter estimation. The choice and rating tasks were better fitted,

with higher coefficients of determination than the force task. However, the value functions

inferred from the rating and force tasks were equally capable of predicting choices. It was

therefore not that the value function elicited with the force task was distorted or variable, but

simply that the force data were noisier. Thus, if the objective is to predict choices, there is no

reason, based on the accuracy criterion, to prefer any particular task.

On the other hand, response times recorded in the force task were shorter than in the rating

task. Moreover, without design optimization, there was no significant reduction in the number
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of trials needed for stabilizing parameter estimation with the rating task compared to the force

task. Thus, the speed criterion (total task duration) seems to be in favor of the force task. Note

that this advantage could vanish if responses were mapped to ratings in a different way, for

instance with one key per value. Also, the effort task requires some equipment and a calibra-

tion phase to determine maximal force, which may mitigate the gain in task duration.

Finally, for a similar precision and speed, the choice task needs an adaptive design (for the

selection of choice options), which implies to posit priors on value functions and on parame-

ters, whereas the other tasks can be run in a model-free manner. Thus, the simplest way to

experimentally measure subjective value functions might not, eventually, be the binary choice

task that is standard in behavioral economics.

Conclusion

To our knowledge, this is the first study comparing direct elicitation of cardinal values (rating

and force tasks) to ordinal rankings (choice task) for a same set of options. Those tasks are

widely used in neuroeconomics and it is somewhat comforting that they reveal similar value

functions driving the behavior despite trivial differences. They nonetheless present different

advantages and drawbacks that may guide the design of future studies.

Methods

Ethics statement

The study was approved by the Pitié-Salpétrière Hospital ethics committee. All subjects were

recruited via e-mail within an academic database and gave informed consent before participa-

tion in the study.

Participants

Participants were right-handed, between 20 and 30 years old, with normal vision and no his-

tory of neurological or psychiatric disease. They were not informed during recruitment that

the task was about giving money to a charity, in order to avoid a bias in the sample. Nineteen

subjects (10 females; age, 22.2 ± 1.4) were included in the study. They believed that the money

won while performing the task would be their remuneration for participating, but eventually,

their payoff was rounded up to a fixed amount (100€).

Behavioral tasks

Subjects performed the three tasks, the order being counterbalanced across subjects for the

force and rating tasks. The choice task was always performed after the two others, which were

performed during MRI scanning for other purposes.

The force task was preceded by maximal force measurement for the right hand [6]. Partici-

pants were verbally encouraged to squeeze continuously as hard as they could until a line

growing in proportion to their force reached a target displayed on a computer screen. Maximal

force was defined as the maximal level reached on three recordings. Then subjects were pro-

vided a real-time feedback about the force produced on the handgrip, which appeared as a red

fluid level moving up and down within a thermometer, the maximal force being indicated as a

horizontal bar at the top. Subjects were asked to try outreaching the bar and state whether it

truly corresponded to their maximal force. If not, the calibration procedure was repeated.

In the force and rating tasks, 121 trials were presented in a random order across three ses-

sions of 40 or 41 trials. Each trial corresponds to one of the 121 combinations of the experi-

ment design (eleven possible incentives for themselves by eleven possible incentives for charity
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donation: from 0€ to 100€ with steps of 10€). Subjects performed the three sessions with the

right hand, with short breaks between sessions to avoid muscle exhaustion.

In the force and rating tasks, each trial started by revealing the potential outcome, com-

posed of two monetary incentives, with the inscriptions “YOU” followed by the amount for

the subject, and “ORG” followed by the amount for the charity (Fig 1, top). The outcome was

displayed for a duration jittered between 4 and 6 seconds. In the force task, subjects knew that

the probability to win the outcome was proportional to the force they would produce after the

display of the thermometer on the screen. More precisely, the probability of winning was equal

to the percentage of their maximal force that they produced in the current trial. Subjects were

also instructed to manage their forces in the effort task to avoid any frustration due to potential

fatigue effect, and to use breaks between sessions to recover their muscular strength. During

task trials, they were provided with online feedback on the exerted force (via a fluid level mov-

ing up and down within a thermometer). They were also informed that they had to produce a

minimal effort in every trial (10% of their maximal force) and that the trial would be over

when they stop squeezing the handgrip. Each trial ended with the display of the final outcome

of their effort, for a duration jittered between 4 and 6 seconds, via the words “WON” (with the

proposed monetary earnings) or “LOST” (with null earnings for both subject and charity).

The rating task only differed at the time of the motor response. Instead of a thermometer, a

vertical rating scale from 0 to 10 units appeared after presentation of the potential outcome.

Subjects were asked to rate the desirability of the outcome on the screen by moving the cursor

through button presses with the right hand (index and middle finger for moving the cursor left

and right, and ring finger for validating the response). They were asked to use the whole scale

across trials. They were also informed that their rating would have no impact on the final out-

come. They were then shown the final outcome that was randomized to obtain a “WON” in

70% trials, and a “LOST” 30% of trials (i.e., a proportion similar to that obtained in the force

task).

The binary choice task included 200 trials, each presenting two composite options, one on

each side of the screen. After considering the two options for 2 seconds, subjects could indicate

the one they would prefer to win using their right hand (index vs. middle finger for left vs.

right option). This option was actually won in 70% of trials, which was indicated with a posi-

tive feedback (“WON”) accompanied by the selected earnings. In the other 30% of trials, a neg-

ative feedback (“LOST”) was shown with a null outcome (0€) for both receivers.

Given the number of options in our design, there were 1212 (14641) possible binary choices.

Constraints can be applied to reduce this number: choices are informative only if options are

crossed (attributes never dominate on both dimensions), if options differ on both dimensions,

and if the pair of options was not previously presented. However, those constraints only

reduced the number of choices to 3025. Thus, we used an online optimization design to exploit

the fact that some options are more informative than others to estimate a value function. At

each trial, the design was optimized over a single dimension (gain or donation). The chosen

combination was the one that minimized the trace of the posterior covariance matrix over the

parameters of an a priori value function defined as follows: V(G,D) = βG
� G + βD

� D + βGD
�

(G � D), corresponding to a linear integration with interaction [20]. Contrary to the force and

rating tasks, the amounts for subjects and charity could vary with steps of 1€ (still between 0€
and 100€), since options were optimized for each trial and subject.

Subjects were informed that three trials would be randomly drawn (one per task) and that

the average outcome would be actually implemented (including both their gain and donation).

They were aware that their responses in the rating task would have no influence on the out-

come, whereas they would have an impact in the effort and choice task. The uncertainty about

winning the outcome was fixed to 70% in the choice and rating tasks, but controlled by the

Valuation models of choice, rating and effort

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005848 November 21, 2017 12 / 18

https://doi.org/10.1371/journal.pcbi.1005848


force produced in the effort task. As expected, the average forces were not significantly differ-

ent from 70% (65±3%, p>0.1), and hence matched the uncertainty level of the other tasks.

Data analysis

Model space. To investigate how the two attributes (gain G and donation D) were inte-

grated into a subjective value, we compared 12 models with different value functions, based on

behavioral data obtained in each task.

We first considered very simple models based on a single dimension, either the minimum

value as in ‘mini’ (1), also called ‘Leontief utility’ [25], or the maximum value as in ‘maxi’ (2).

Mini : VðG;DÞ ¼ minðaG; bDÞ ð1Þ

Maxi : VðG;DÞ ¼ maxðaG;bDÞ ð2Þ

The six following models are based on Park and colleagues’ study [28]. They were initially

used to examine the integration of positive and negative values into an overall subjective value,

which we extrapolated to the integration of money received and money allocated (to a charity).

These models differ on the presence of an interaction between attributes and on the presence

of a non-linear transformation of attributes, which should be concave for gains and convex for

losses, according to prospect theory [3]. In addition, the non-linear transformation could be

similar or not (same parameter or not) for gains and losses. We refer to these models as (3) lin-

ear—independent, (4) similarly nonlinear—independent, (5) nonlinear—independent, (6) lin-

ear—interactive, (7) similarly nonlinear—interactive and (8) nonlinear—interactive.

Linear � independent : VðG;DÞ ¼ aGþ bD ð3Þ

Similarly non� linear � independent : VðG;DÞ ¼ aGd þ bDd ð4Þ

Non� linear � independent : VðG;DÞ ¼ aGd þ bDε ð5Þ

Linear � interactive : VðG;DÞ ¼ aGþ bDþ gGD ð6Þ

Similarly non� linear � interactive : VðG;DÞ ¼ aGd þ bDd þ gGdDd ð7Þ

Non� linear � interactive : VðG;DÞ ¼ aGd þ bDε þ gGdDε ð8Þ

In order to complete those six models, we have included other standard value functions

used in previous studies. Notably, some models have been developed to account for the poten-

tial intrinsic value of equity, as suggested by equity theory [29]. For instance, the model that

we have called linear—equity (9) integrates a proxy for inequity: the absolute difference

between gain and donation.

Linear� equity : VðG;DÞ ¼ aGþ bDþ gjG � Dj ð9Þ

Another function has been proposed by Fehr and Schmidt to explain inequity aversion

[30], a model (10) that we also included.

Fehr&Schmidt : VðG;DÞ ¼ G � amaxðD � G; 0Þ � bmaxðG � D; 0Þ ð10Þ

Finally, we have included production functions, even if they were not developed in the con-

text of altruistic donation, because they implement other ways of combining two dimensions.

Valuation models of choice, rating and effort

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005848 November 21, 2017 13 / 18

https://doi.org/10.1371/journal.pcbi.1005848


The simplest is the Cobb-Douglas production function (11), which is both multiplicative and

non-linear.

Cobb� Douglas : VðG;DÞ ¼ Gd � D1� d ð11Þ

A more general form is the CES function (12), commonly used to account for consumer

behavior [25], with a parameter α for linear weighting of dimensions and a parameter δ for

concavity of preferences. Note that Leontief, Linear and Cobb-Douglas functions are special

cases of the CES function.

Constant Elasticity of Substitution ðCESÞ : VðG;DÞ ¼ ðaGd þ ð1 � aÞDdÞ
1=d

ð12Þ

Value-response mapping. To formalize the link between behavioral responses and out-

come values, we defined net utility functions in the three tasks.

In the choice task, responses are consequential because subjects can only win the chosen

outcome (with 70% probability). In other words, the benefit associated to the choice is the

expected value of the outcome (value times probability). The value of the unchosen outcome

can be seen as an opportunity cost. Therefore, subjects should maximize the following net util-

ity function:

U ðC;G;DÞ ¼ VC1ðG;DÞ � 0:7 � VC0ðG;DÞ � 0:7 ¼ 0:7 � ðVC1ðG;DÞ � VC0ðG;DÞÞ ð13Þ

With C1 and C0 being chosen and unchosen, respectively. Thus, choice rate should scale to

the distance between outcome values. This distance is classically transformed into choice prob-

ability through a softmax function [4]. For the probability of choosing the left option the soft-
max function is:

P GL;DLð Þ ¼
1

1þ e�
VðGL ;DLÞ� VðGR ;DRÞ

b

ð14Þ

With V(GL,DL) and V(GR,DR) the values of left and right options, and β the temperature

(choice stochasticity). Obviously the probability of selecting the other (right) option is:

PðGR;DRÞ ¼ 1 � PðGL;DLÞ ð15Þ

In the rating task, responses are not consequential, since feedbacks (winning or not the out-

come) are randomly drawn (with 70% probability). The reason why ratings are informative

about values can only be that subjects wish to comply with instructions, and report their genu-

ine judgment about outcome desirability. In other words, they try to minimize the error

between overt ratings and covert judgments. Following a previously published model [31],

they should maximize a net utility function defined as:

UðR;G;DÞ ¼ � ðR � VðG;DÞÞ2 ð16Þ

With R being the potential rating. The optimal rating is the one that maximizes the net utility

function, which quite trivially is just the outcome value:

argmax R U ¼ VðG;DÞ ð17Þ

Thus, although we ignore the scale on which internal judgments are made, ratings should line-

arly reflect outcome values. Note that we neglect here the cost of moving the cursor along the

scale, which could favor medium ratings. This might shrink the rating distribution but not

alter the linear scaling.
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In the effort task, responses are consequential, since the force produced determines the

probability of winning the outcome. In addition, this task also entails an effort cost, which is

modeled as a supralinear function of force in motor control theory [9]. Thus, a simple net util-

ity function (see [32] for a recent use) that subjects should maximize inludes a quadratic effort

cost that is subtracted from the expected outcome value (value times probability):

U ¼ VðG;DÞ � F � g � F2 ð18Þ

With F being the potential force (and outcome probability), and γ a parameter scaling effort

cost to expected value. The force F� maximizing the net utility is:

argmax F U ¼ F� ¼
VðG;DÞ

2g
ð19Þ

Therefore, forces should linearly reflect outcome values. Note that the uncertainty compo-

nent (controlled by F) cancels out and observed forces can be used as direct readouts of subjec-

tive values. We also neglected the cost of time here. Although it is true that producing higher

forces takes more time (at the scale of ms), this could only change the scaling between forces

and values, not the linear relationship.

Responses were modeled with a linear function for both the rating and effort tasks:

RðG;DÞ ¼ aVðG;DÞ þ b ð20Þ

With R the rating assigned to a potential outcome composed of gain G and donation D,

scaled by parameters a and b. The same linear function was used to generate forces, with differ-

ent scaling parameters a and b.

Model fitting and comparison. Every model was fitted at the individual level to ratings,

forces and choices using the Matlab VBA-toolbox (available at http://mbb-team.github.io/

VBA-toolbox/), which implements Variational Bayesian analysis under the Laplace approxi-

mation [21, 33]. This iterative algorithm provides a free-energy approximation to the marginal

likelihood or model evidence, which represents a natural trade-off between model accuracy

(goodness of fit) and complexity (degrees of freedom) [34, 35]. Additionally, the algorithm

provides an estimate of the posterior density over the model free parameters, starting with

Gaussian priors. Individual log-model evidences were then taken to group-level random-effect

Bayesian model selection (RFX-BMS) procedure [22, 23]. RFX-BMS provides an exceedance

probability (Xp) that measures how likely it is that a given model (or family of models) is more

frequently implemented, relative to all the others considered in the model space, in the popula-

tion from which participants were drawn [22, 23].

The first model comparison was done to determine whether the same value function was

used across the three tasks. For this purpose, 123 = 1728 models were built with every possible

combination of functions across tasks. We then calculated the model evidence for the models

that included the same function for all tasks (‘same’ family) and for all the other models (‘dif-

ferent’ family), following the procedure proposed by [22]. We then used family-wise inference

at the group level to estimate the probability that participants used the same value function in

the different tasks [36].

The second model comparison was done to assess whether the same selfishness and concav-

ity parameters (in the winning CES value function) could be used in the three tasks. For this

purpose 5 models were built for each parameter, representing all possible combinations:

• ρF6¼ρR6¼ρC

• ρF = ρR6¼ρC
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• ρF6¼ρR = ρC

• ρF = ρC6¼ρR

• ρF = ρR = ρC

Convergence assessment. In order to assess convergence of model fitting, we estimated

the parameters of the CES function iteratively, including trials one at a time. At each step we

calculated the increase in estimation precision γ:

gt ¼
st� 1 � st

st� 1

ð21Þ

with σt the mean posterior variance (over all parameters) at trial t. This convergence measure

tracks the information gain afforded by each trial. The convergence threshold was set at 5%,

i.e. the minimum number of trials was defined as the last trial in which the convergence mea-

sure was above 5%. As the convergence measure was monitored separately for the three tasks,

the minimal number of trials needed to reach the threshold can be used to compare their effi-

ciency in eliciting the parameters of the CES function. This convergence measure can be

derived post-hoc using either the native or the optimized sequence of trials. For the latter, the

first eleven trials were chosen so as to cover the range of possible gains and donations (with

amounts of 0, 30, 50, 70 and 100€ in both dimension), in a randomized order. Then, to opti-

mize information gain, the next options were selected at each trial such that the trace of the

expected posterior matrix would be minimized.
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