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What drives us to search for creative ideas, and why does it feel good to find one? While
previous studies demonstrated the positive influence of motivation on creative abilities, how
reward and subjective values play a role in creativity remains unknown. This study proposes to
characterize the role of individual preferences (how people value ideas) in creative ideation via
behavioral experiments and computational modeling. Using the Free Generation of Associates
Task coupled with rating tasks, we demonstrate the involvement of valuation processes during
idea generation: Preferred ideas are provided faster. We found that valuation depends on the
adequacy and originality of ideas and guides response selection and creativity. Finally, our
computational model correctly predicts the speed and quality of human creative responses, as
well as interindividual differences in creative abilities. Altogether, this model introduces the
mechanistic role of valuation in creativity. It paves the way for a neurocomputational account
of creativity mechanisms.
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Public Significance Statement

This study addresses the role of individual preferences in creativity. It demonstrates that
preferences for ideas energize creative idea production: the more participants like their ideas,
the faster they provide them. Moreover, preferences rely on an equilibrium between
the adequacy and originality of ideas and vary across individuals. This study introduces
a computational model that incorporates individual preferences and correctly predicts the
speed and quality of responses in a creative idea generation task, as well as interindividual
differences in creative abilities. Comparison of several versions of this model demonstrated
that preferences guide the selection of creative responses.
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2 LOPEZ-PERSEM ET AL.

Creativity is a core component of our ability to promote
and cope with change. Creativity is defined as the ability to
produce an object (or an idea) that is both original and
adequate to the context (Dietrich, 2004; Jung & Vartanian,
2018; Runco & Jaeger, 2012). The cognitive mechanisms
underlying the production of an original and adequate idea
are yet to be elucidated.

It is largely admitted that creativity involves two interacting
phases: generation and evaluation (Beaty et al., 2016; Benedek
& Jauk, 2018; Dietrich, 2004; Ellamil et al., 2012; Guo et al.,
2022; Kleinmintz et al., 2019; Lin & Vartanian, 2018; Mekern
et al., 2019; Sowden et al., 2015). Theoretical models includ-
ing these two processes have been proposed, such as the
“twofold model of creativity” (Kleinmintz et al., 2019) or the
“blind-variation and selective retention model” (Campbell,
1960; Simonton, 1998; Sowden et al., 2015), a Darwinian-
inspired theory stating that ideas are generated and evaluated
on a trial and error basis, similarly to a variation-selection
process. However, what kind of processes underlies evalua-
tion in the context of creativity (in other words, what evalua-
tive processes drive selection) remains overlooked.

Previous frameworks assumed that the originality and
adequacy of ideas are evaluated to drive the selection of
an idea during idea production (Donzallaz et al., 2021; Khalil
& Moustafa, 2022; Lin & Vartanian, 2018). Existing theories
also usually align evaluation with controlled or metacogni-
tive processes (i.e., detecting relevant ideas, monitoring, and
applying some control to select or inhibit early thoughts
and adapt to the context) and align them to the salience and
executive control networks (ECN; Beaty et al., 2014; Ellamil
etal., 2012; Huang et al., 2015, 2018; Kleinmintz et al., 2019;
Lin & Vartanian, 2018; Mayseless et al., 2014; Rataj et al.,
2018; Ren et al., 2020; Rominger et al., 2020; Sowden et al.,
2015). However, how these processes work and result in idea
selection remains unknown.

Because evaluative processes in other domains involve that
subjective values are assigned to options to guide selection
(Rushworth & Behrens, 2008), we hypothesize that evaluation
in the context of creativity also requires building a subjective

value. As previous work highlighted the importance of ade-
quacy and originality in idea evaluation, we propose that this
value is based on a combination of originality and adequacy of
candidate ideas. Hence, we introduce valuation in the ideation
process and dissociate them from other evaluation and gener-
ation processes. Valuation can be defined as a quantification of
the subjective desire or preference for an entity (Redish et al.,
2016) and consists in assigning a subjective value to an option,
that is, to define how much it is “likeable” or “desirable.”

Previous studies assessing the role of evaluation in creativity
(Ellamil et al., 2012; Huang et al., 2015, 2018; Mayseless et
al., 2014; Rataj et al., 2018; Ren et al., 2020; Rominger et al.,
2020) did not dissociate the valuation processes per se from the
ones associated with controlled or metacognitive processes
(i.e., evaluation, monitoring, and applying some control to
select or inhibit early thoughts and adapt to the context).
However, the neuroscience of value-based decision-making
demonstrated that they are distinct, experimentally dissociable,
and have separate brain substrates (Shenhav & Karmarkar,
2019). Indeed, valuation processes have been investigated for
centuries by philosophers, economists, psychologists, and
more recently by neuroscientists (Levy & Glimcher, 2012),
outside of the creativity field. Advances in the neuroscience of
decision-making have allowed the identification of a neural
network, the brain valuation system (BVS), representing the
subjective value of options an agent considers (Levy &
Glimcher, 2012). The BVS activity reflects values in a generic
(independent of the kind of items) and automatic (even when
we are engaged in another task) manner (Lopez-Persem et al.,
2016). Interestingly, the BVS is often coupled with the ECN
when a choice has to be made in two different ways. First, in a
top-down manner, the ECN modulates values according to the
context (Hare et al., 2009); and second, in a bottom-up way, it
drives the choice selection by integrating decision values
(Domenech et al., 2018). The new framework that we propose
through the present study is that evaluation processes in
creativity involve valuation, implemented by the BVS, in
interaction with exploration and selection processes, sup-
ported by other networks.
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Existing studies provide indirect arguments for the
involvement of the BVS in creativity by showing a role of
dopamine (Ang et al., 2018; Boot et al., 2017; Chermahini &
Hommel, 2010; de Manzano et al., 2010) and of the ventral
striatum in creativity (Aberg et al., 2017; Huang et al., 2015;
Takeuchi et al., 2010; Tik et al., 2018). Nevertheless, very
little is known about the role of the BVS in creativity, and its
interaction with the commonly reported brain networks
for creativity (default mode network [DMN] and ECN)
has, to our knowledge, not been explored. In fact, the place
for valuation processes in creativity still needs to be concep-
tualized and empirically investigated.

Here, we formulate the hypothesis that originality and
adequacy are combined into a “subjective value” according
to individual preferences and that this subjective value drives
the creative degree of the output. This value can impact the
selection of an idea and possibly have a motivational role
(Pessiglione et al., 2018) in exploring candidate ideas. Taking
into account previous research from both creativity and
decision-making fields, we hypothesize that creativity involves
(1) an explorer module that works on individual knowledge
representations and provides a set of options/ideas varying in
originality and adequacy, (2) a valuator module that computes
the likeability of candidate ideas (their subjective value) based
on a combination of their originality and adequacy with the
goal an agent tries to reach, and (3) a selector module that
applies contextual constraints and integrates the subjective
value of candidate ideas to guide the selection. To test these
hypotheses, we combined several methods of cognitive and
computational neuroscience. We built a computational model
composed of the explorer, valuator, and selector modules,
which we modeled separately (Figure 1) as detailed below.

First, producing something new and appropriate (i.e., crea-
tive) relies in part on the ability to retrieve, manipulate, or
combine elements of knowledge stored in our memory
(Benedek et al., 2012; Kenett et al., 2014). Semantic memory
network methods have proven valuable in studying these
processes (Benedek et al., 2017; Bernard et al., 2019; Bieth
et al., 2021; Ovando-Tellez et al., 2022). Semantic networks
consist of a set of nodes, which represent concepts or words,
interconnected by links that represent the strength of the
semantic association between them. Semantic networks pro-
vide a structure on which (censored or biased) random walk
approaches have been tested to mimic semantic memory search
(Zemla & Austerweil, 2017). (Pseudo)random walks on a
semantic network mimic path that can be taken into the network
to move from one node to another one. Those models have
been essentially used to explain fluency tasks (Abbott et al.,
2015) and memory retrieval of remote associates (Kenett &
Austerweil, 2016), but they have not yet been combined with
decision models that could bring new insights into how
individuals reach a creative solution. Based on this literature,
we modeled the explorer module as a random walk wandering
into semantic networks.

Second, valuation and selection processes are typically
studied using decision models. Utility (economic term for
subjective value) functions can well capture valuation of
multiattribute options that weigh attributes differently depend-
ing on individuals (Lopez-Persem et al., 2017; Samuelson,
1938; Von Winterfeldt & Fischer, 1975). Hence, we modeled
the valuator module of our model as a utility function that
assigns subjective values to candidate ideas based on the
subjective evaluation of their adequacy and originality, con-
sidered the necessary attributes of a creative idea.

Third, the computed subjective value is then used to make
a decision. Simple decision models like soffmax functions
(Luce, 1959) can explain many types of choices, ranging
from concrete food choices to abstract moral choices, as soon
as they rely on subjective values. Briefly, a softmax function
is a mathematical function that converts a decision value,
that is, the subjective values of options, into a probability of
choosing one option or another. Here, we reasoned that such
a simple function could capture and predict creative choices
(selector module) when taking subjective values of candidate
ideas as input.

Overall, through different approaches to test our hypotheses,
we developed an original computational model (Figure 1) in
which each module (explorer, valuator, selector) was modeled
separately. We aimed at (a) determining whether subjective
valuation occurs during idea generation (creativity task) and
defining a valuator module from behavioral measures during
the decision-making tasks; (b) developing the explorer and
selector modules and characterizing which module(s) relies
on subjective valuation (explorer and/or selector); (c) simulat-
ing surrogate data from the full model composed of the three
modules and comparing it to human behavior; and (d) asses-
sing the relevance of the model parameters for creative
abilities.

Empirical Study
Method

Participants

An official ethics committee approved the study (Comité
de Protection des Personnes Ouest II—Angers). Seventy-one
participants were recruited and tested thanks to the Plateforme
de Recherche sur les Interactions Sociales, la Motivation et les
Emotions (PRISME) platform of the Paris Brain Institute.
They gave informed consent and were compensated for their
participation. Inclusion criteria were: being right-handed,
native French speakers, between 22 and 40 years old, with
correct or corrected vision, and having no history of neurologi-
cal or psychiatric disease. Two participants were excluded
because of a misunderstanding of the instructions, bringing the
final number of participants to 69 (41 females and 28 males;
M,ge: 25.8 = 4.5; mean level of education: number of study
years following French A levels: 5.0 = 1.6). The initial sample
size was defined based on the interindividual correlations that
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Figure 1
Schematic Representation of the Computational Model
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The model takes as input a cue, that “activates” a semantic memory network. Semantic search (exploration) is implemented as a biased random walk, in

which node transition probability P is determined by the frequency of association F between the node i and its connected nodes j. The visited nodes (options 1 to
n) are evaluated in terms of adequacy (A), originality (O), and the valuator assigns a likeability (L) to each of them, CES stands for constant elasticity of
substitution, see Results section. A response is selected in function of the FGAT condition: in the First condition (F), the selection is based on adequacy and in
the Distant condition (D), the selection is based on likeability. Equations results from the different model comparisons conducted in the study and are detailed in
the article. Text in black corresponds to our framework and hypotheses while text green corresponds to the results obtained in our study. CES = constant

elasticity of substitution; FGAT = Free Generation of Associations Task.

we wanted to address between the model parameters and the
creativity scores from the battery of tests. Using the software
G*Power, we estimated that to detect a positive moderate
effect size (r = 0.3) with a statistical power of 80%, for a
p value threshold of .05, we needed 64 participants. As we
anticipated outliers and potential exclusions, we planned to
include 75 participants but four did not show up for their
appointment, resulting in 71 included participants.

Experimental Design

Each participant performed three types of tasks of creative
generation and evaluation of ideas, which were followed by a
battery of tests classically used in the laboratory and asses-
sing the participant’s creative abilities. All tasks and tests
were computerized and administered in the same fixed order
for all participants.

Free Generation of Associations Task. The Free Gen-
eration of Associations Task (hereinafter referred to as FGAT)
is a word association task, previously shown to capture aspects
of creativity (Bendetowicz et al., 2017; Prabhakaran et al.,
2014). It is composed of two conditions, presented succes-
sively and always in the same order. Cue word selection is
detailed in the Supplemental Material.

FGAT First Condition. After a five-trial training session,
participants performed 62 trials of the first condition block
(hereafter referred to as FGAT First). They were presented
with a cue word and instructed to provide the first word that
came to mind after reading it. They had 10 s to find a word and
press the spacebar and then were allowed 10 s maximum to
type it on a keyboard. This condition was used to explore the

participants’ spontaneous semantic associations and served as
a control condition that is not a creative task per se.

FGAT Distant Condition. In a different following block,
participants were administered 62 trials of the second condi-
tion of the task (hereafter referred to as FGAT Distant). On
each trial, they were presented with a cue word as in the
previous condition and instructed to press the spacebar once
they had thought of a word unusually associated with the cue.
They were asked to find a distant but understandable associ-
ate and to think creatively. They had 20 s to think of a word,
press the spacebar, and then were allowed 10 s maximum to
type it. This condition measures the participants’ ability to
intentionally produce remote and creative associations.

Rating Tasks. After the FGAT task, participants per-
formed two rating tasks. In the first block, they had to rate
how much they liked an association of two words (likeability
rating task). Then, in a separate block performed after the
choice task (see below), they had to rate the originality and
the adequacy (originality and adequacy rating task) of the
same associations as in the likeability rating task.

Likeability Rating Task. After a five-trial training ses-
sion, participants performed 197 trials in which they were
presented with an association of two words (cue-response,
see below) and asked to rate how much they liked this cue—
response association in a creative context, that is, how much
they liked it or would have liked to find it during the
FGAT Distant condition. A cue-response association was
displayed on the screen, and 0.3-0.6 s later, a rating scale
appeared underneath it. The rating scale’s low to high values
were represented from left to right, without any numerical
values but with 101 steps and a segment indicating the middle
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of the scale (later converted in ratings ranging between 0 and
100). Participants entered their ratings by pressing the left
and right arrows on the keyboard to move a slider across the
rating scale, with the instruction to use the whole scale. Once
satisfied with the slider’s location, they pressed the spacebar to
validate their rating and went on to the subsequent trial.
No time limit was applied, but participants were instructed
to respond as spontaneously as possible. A symbol (a heart
for likeability ratings) was placed underneath the scale as
a reminder of the dimension on which the words were to
be rated.

Originality and Adequacy Ratings. The originality and
adequacy rating task was performed after the likeability rating
task and the choice task to avoid any prior influence of these
dimensions on the likeability ratings and choices. After a five-
trial training session, participants performed a block of 197
trials. They were asked to rate the same set of associations as in

Figure 2
Experimental Design

A -

Likeability

ratings

FGAT
Distant

the likeability task, but this time in terms of originality and
adequacy, and in a different random order. The instructions
described an original association as “original, unusual, sur-
prising.” An adequate association was described as “appropri-
ate, understandable meaning, relevant, suitable.” Note that the
instructions were given in French to the participants, and the
adjectives used here are the closest translation we could find.

For each cue-response association, participants had to rate
originality and adequacy dimensions one after the other, in a
balanced order (in half of the trials, participants were asked to
rate the association’s adequacy before its originality, and in the
other half of the trials, it was the opposite). The order was
unpredictable for the participant. Similar to the likeability
ratings, the rating scale appeared underneath the association
after 0.3-0.6 s, with a different symbol below it: a star for
originality ratings and a target for adequacy ratings, as de-
picted in Figure 2.

Adequacy and
originality
ratings

Battery of

L creativity tests

B
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your mind » understandable
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: Choice task
Time
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197 trials (35 cues)

Mother
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Mother
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Mother
School
—
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Rating tasks

(A) Chronological order of successive tasks. (B) From top to bottom, successive screenshots of example trials are shown for

the three types of tasks (left: FGAT task, middle: choice task, right: rating tasks). Every trial started with a fixation cross, followed by
one cue word. In the FGAT task, when participant had a response in mind, they had to press the space bar and the word “Response?”
popped out on the screen. The FGAT task had two conditions. Participants had to press a space for providing the first word that came
to their mind in the First condition and an unusual, original but associated word in the Distant condition. In the choice task, two words
were displayed on the screen below the cue. Participants had to choose the association they preferred using the arrow keys. As soon as
a choice was made, another cue appeared on the screen and the next trial began. In the rating tasks, one word appeared on the screen
below the cue. Then a scale appeared on the screen, noticing subjects that it was time for providing a response. In the likeability rating
task, participants were asked to indicate how much they liked the association in the context of FGAT Distant. In the adequacy and
originality rating tasks, each association was first rated on either adequacy and originality and then on the remaining dimension.
Order was counterbalanced (see the Method section, for details). FGAT = Free Generation of Associations Task.
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Cue-Word Associations in the Rating Tasks. The 197
cue-response associations presented in the rating were built
with 35 FGAT cue words randomly selected for each partici-
pant after they performed the FGAT task. We used a Matlab
script that implemented an adaptive design with the following
rules. Each of the 35 cue words was paired with seven different
words, amounting to 245 possible associations in total. We
paired each cue word with (a) the participant response to the
cue FGAT First, (b) the participant’s response to the cue in
FGAT Distant, (c) one word selected randomly from the most
common FGAT first responses from another data set collected
previously in the lab that gathers the responses of 96 indepen-
dent and healthy participants on a similar FGAT task, (d) one
word selected randomly from the less common FGAT First
responses from this other data set, (¢) one word selected
randomly from the most common FGAT Distant responses
from the same other data set, (f) one word selected randomly
from the less common FGAT Distant responses from the same
other data set, and (g) one unrelated association for each
cue (“cow” with “inverse,” for instance; see Supplemental
Methods, for a full description).

We used these word associations from another study and
unrelated associations to obtain a sufficient sampling of all
possible combinations of adequacy and originality ratings (to
estimate likeability with sufficient statistical power).

Choice Task. Participants performed a binary choice
task between the likeability rating task and the adequacy—
originality rating task. They had to choose between two
words the one they preferred to be associated with a cue
in a creative context, that is, in the FGAT Distant context.
Instructions were as follows: “For example, would you have
preferred to answer ‘silver’ or ‘jewelry’ to ‘necklace’ when
generating original associations during the previous task?”
(There was additionally a reminder of the FGAT Distant
condition in the instructions.) Details of the task and how the
items were selected can be found in Supplemental Methods.

Battery of Creativity Tests. A battery of creativity tests
and questionnaires run on Qualtrics followed the previous
tasks to assess the participants’ creative abilities and behav-
ior. It was composed of the alternative uses task (AUT), the
ICAA, aself-report of creative abilities, a scale of preferences
in creativity between adequacy and originality, and a fluency
task on six FGAT cues. They are described in detail in the
Supplemental Methods.

Statistical Analysis

All analyses were performed using Matlab; MATLAB
(2020). 9.9.0.1495850 (R2020b), Natick, Massachusetts:
The MathWorks Inc.

FGAT Responses. The main behavioral measures in the
FGAT task are the response time (pressing the space key to
provide an answer), the typing speed (number of letters per
second), and the associative frequency of the responses. This

frequency was computed based on a French database called
Dictaverf (http://dictaverf.nsu.ru/; Debrenne, 2011) built on
spontaneous associations provided by at least 400 individuals
in response to 1,081 words (each person saw 100 random
words). Frequencies were log-transformed to take into
account their skewed distribution toward 0. Cues varied in
terms of steepness (the ratio between the associative fre-
quency of the first and second free associates of a given cue
word), which was a variable of interest. Subjects’ ratings of
their responses (adequacy, originality, and likeability) were
also used as variables of interest.

Linear regressions were conducted at the subject level
between normalized variables. Significance was tested at the
group level using one sample, two-tailed ¢ tests on coefficient
estimates.

Likeability Ratings Relationship With Adequacy and
Originality Ratings. In this analysis, we aimed at explain-
ing how likeability ratings integrated adequacy and original-
ity dimensions. We tested whether this integration was linear
or not (with exponential terms or with the addition of
interaction terms, or without) and whether adequacy and
originality were in competition or not (one relative weight
balancing adequacy and originality or two independent
weights).

First, we fitted 12 different functions to likeability ratings
capturing different types of relationships; for instance, linear
of not linear between likeability (L) and adequacy (A), and
originality (O):

¢ Linear models:

L; = PA;, (1)
Li=a0; + (1 — 0)A,, 2)
L; = a0; + PA;. 3)
* Linear with interaction term models:
L; = a0; + (1 — a)A; + yO;*A,, 4)
L; = a0; + PA; + Y0;*A;, )
L; =v0;*A;. (0)

* Nonlinear models (with the same nonlinearity on
both dimensions):

L= (a0? + (1 — a)Ad) (CES),  (7)
L= (a0 + PAD), ®)
L; = a0? + BAR. ©)

The nonlinear model (7) is also referred to as constant
elasticity of substitution (CES; Andreoni & Miller, 2003).
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* Nonlinear models (with different nonlinearity on
both dimensions):

L; = A3, (10)
L= a0® + (1 — a)As, (1)
L; = a0? + BAS. (12)

Greek letters correspond to free parameters estimated with
the fitting procedure described below; i refers to a given cue—
response association.

Then, we compared the performance of the 12 models to
explain the relationship between likeability ratings and ade-
quacy and originality ratings. Model fitting and comparison
procedure is detailed in the General Procedure for Model
Fitting and Comparison section.

Results

Sixty-nine subjects were included in the analyses (see the
Participants section). The experiment consisted of several
successive tasks (Figure 2; see the Experimental Design
section): the Free Generation of Associate Task (FGAT),
designed to investigate generative processes and creative
abilities, a likeability rating task, a choice task, an originality,
and adequacy rating task, and a battery of creativity
assessment.

FGAT Behavior: Effect of Task Condition on
Speed and Link With Likeability

In the First condition of the FGAT task, participants were
asked to provide the first word that came to mind in response
to a cue. In the Distant condition, they had to provide an
original, unusual, but associated response to the same cues as
in the First condition (see Figure 2 and the Free Generation
of Associations Task section).

We investigated the quality and speed of responses in the
FGAT task in the First and Distant conditions. The quality of
responses was investigated using their associative frequency
obtained from the French database of word associations
Dictaverf (see the Statistical Analysis section) and using
the ratings that participants provided in three rating tasks
requiring them to judge how much they liked an idea (like-
ability of a response to the FGAT Distant condition, see the
Rating Tasks section), how much original they found it
(originality), and how appropriate (adequacy).

FGAT Responses: Associative Frequency. Consistent
with the instructions of the FGAT conditions, we found that
participants provided more frequent responses (i.e., more
common responses to a given cue based on the French norms
of word associations Dictaverf ) in the First condition than in
the Distant condition, log(Frequencyg;) = —3.25 = 0.11,
log(Frequencypisian) = —6.21 £ 0.11, M =+ standard error of
the mean, 1(68) = 18.93, p = 8.107>°. Then, we observed that

response time in the FGAT task decreased with the cue—
response associative frequency, both in the First, p = —0.34 +
0.02, 1(68) = —15.92, p = 1.107*, and Distant, p = —0.10 +
0.02, #(68) = —6.27, p = 3.10~%, conditions, suggesting that it
takes more time to provide a rare response compared to a
common one (Supplemental Figure S1A). We also observed
that the cue steepness (how strongly connected is the first
associate of the cue, see the Statistical Analysis section) also
significantly shortened response time for First responses but
not significantly for Distant responses, Bgise = —0.13 £ 0.02,
1(68) = —8.5, p = 3.107"%; Ppistant = —0.02 = 0.01, #(68) =
—1.16, p = .25, Supplemental Figure S1B.

FGAT Responses: Adequacy and Originality. Using
adequacy and originality ratings provided by the partici-
pants, we found that First responses were rated as more
adequate than Distant responses, Adequacyg; = 86.47 +
0.99, Adequacypistant = 77.24 £ 1.23, #(68) = 9.29, p =
1.107"3, but Distant responses were rated as more original
than First responses, Originalitygjs; = 33.80 = 1.74, Ori-
ginalitypigan = 64.43 + 1.37, #(68) = —16.36, p = 3.107%.
Note that the difference in originality ratings (First vs. Distant
responses) was greater than the difference in adequacy ratings,
1(68)=—13.87, p = 2.107%!, suggesting that Distant responses
were found both adequate and original, that is, creative, while
First responses were mainly appropriate (Figure 3A).

FGAT Responses: Likeability. Last, we considered that
response time and typing speed could reflect an implicit
valuation of responses (Niv, 2007). To test whether an
implicit subjective valuation of responses happened during
the FGAT creative condition (Distant), we investigated the
link between response time, typing speed, and the likeability
of their own FGAT responses (see the FGAT Responses
section). We found that response time in the Distant condition
decreased with likeability, Ppistane = —0.15 £ 0.02, #68) =
—7.25, p =5.107"°, and that typing speed increased with it,
Boistant = 0.08 = 0.02, #(68) = 3.88, p = 2.10~*. Participants
were faster for providing Distant FGAT responses they liked
the most. The pattern was different in the First condition, in
which we observed a significant increase in response time with
likeability, B = 0.08 + 0.02, #(68) = 3.78, p = 3.107*, and
no significant effect of likeability on typing speed, Pris; =
0.009 + 0.02, #(68) = 0.36, p = .72. The effects of likeability
significantly differed at the group level between the First and
Distant conditions; Distant vs. First effect of likeability on
response time: 1(68) = —7.30, p = 4.107'%; on typing speed:
#68) = 2.21, p = .03, Figure 3B.

Note that the link between likeability rating and response time
or typing speed remains after removing confounding factors
(adequacy and originality ratings, Supplemental Table S1).

Together, those findings suggest that likeability might have
been cognitively processed during the FGAT task and influ-
enced the behavior, particularly during the FGAT Distant
condition, which is assumed to require an evaluation of the
response before the participants typed their answers. As a
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Figure 3
Behavioral Results of the Free Generation of Associations Task
(FGAT)
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Note. (A) Heat maps of First (top), Distant (middle), and Distant—First
(bottom) proportions of responses per bin of adequacy and originality
ratings. (B) Correlation between response time (top) and typing speed
(bottom) in the FGAT task and likeability ratings of the FGAT responses
for the First (yellow) and Distant (orange) conditions. Circles indicate binned
data averaged across participants. Error bars are intersubject standard errors
of the mean. Solid lines correspond to the averaged linear regression fit
across participants, significant at the group level (p < .05). Dotted lines
indicate that the regression fit is nonsignificant at the group level (p > .05). In
B top, transparent bars correspond to the average number of responses per
bin of likeability. RT = response time.

control analysis, we also found that likeability ratings drove
choices (choice task, see Supplemental Results and Supple-
mental Figure S2), suggesting that likeability is relevant both
in the FGAT Distant condition and in binary choices linked to
creative response production. We next assessed how like-
ability ratings relied on adequacy and originality ratings.

Likeability Depends on Originality and Adequacy Ratings

To better understand how subjects built their subjective
value and assigned a likeability rating to a cue-response
association, we focused on the behavior measured during the
rating tasks. In the rating tasks, participants judged a series of
cue—response associations in terms of their likeability, ade-
quacy, and originality (see Figure 2 and the Rating Tasks

section). Here, we explored the relationship between those
three types of ratings.

We first observed that likeability increased with both origi-
nality and adequacy (Figure 4). Then, to precisely capture how
adequacy and originality contributed to likeability judgments,
we compared 12 different linear and nonlinear models (see
the Likeability Ratings Relationship With Adequacy and
Originality Ratings section). Among them, the CES model
outperformed (Lopez-Persem et al., 2017) the alternatives
(estimated model frequency: Ef = 0.36, exceedance proba-
bility: Xp = 0.87). CES combines originality and adequacy
with a weighting parameter o and a convexity parameter &
into a subjective value (likeability rating; see equation in
Figure 1 and fit in Figure 4). In our group of participants, we
found that a was significantly lower than 0.5, indicating an
average overweighting of adequacy compared to originality,
M a =043 £0.03, #(68) = —2.37, p = .02, one sample two-
sided ¢ test against 0.5. Additionally, & was significantly lower
than 1, indicating that a balanced equilibrium between ade-
quacy and originality was on average preferred compared to an
unbalanced equilibrium, such as associations with high ade-
quacy and low originality, M § = 0.62 + 0.11, #(68) = —3.46,
p =9.107, one sample two-sided ¢ test against 1.

Individual Preferences and Responses Creativity

In the previous analyses, we found that the new ideas
people like the most are produced the fastest. On the contrary,
we found that infrequent ideas took more time to be provided.
Unsurprisingly, when assessing the relationship between
frequency of responses and likeability ratings of Distant
responses in our group of participants, we found no signifi-
cant effect at the group level; linear regression of likeability
ratings against frequency at each individual level, one sample
two-sided ¢ test at the group level on the mean regression
coefficient: #(68) = 0.13, p = .89, Supplemental Figure S3.

Nevertheless, in the previous analyses, we also found that
preferences rely on a balance between adequacy and origi-
nality. We then checked the relationship between frequency
and likeability of Distant responses by splitting our group
of participants according to the value of the o parameter.
Participants with o > 0.5 (favoring originality in their
likeability judgments) were pooled in Group 1 and partici-
pants with o < 0.5 (favoring adequacy in their likeability
judgment) in Group 2. We found that Group 1 preferred
(rated likeability higher) more creative ideas, #28) = —2.70,
p = .01, Supplemental Figure S3, while Group 2 preferred
less creative ideas, #(39) = 2.60, p = .013, Supplemental
Figure S3. The difference of regression coefficient between
groups was strong and significant; two-sample, one-sided
ttest: (67)=4.23,p = 7.107>. In other word, the link between
likeability and creativity was positive only in participants who
favored originality over adequacy.
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Figure 4
Behavioral Results of the Rating Tasks: Building the Valuator
Module
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Note. Average likeability ratings (left) and fit (right) are shown as functions
of adequacy and originality ratings. Black to hot colors indicate low to high
values of likeability ratings (left) or fitted subjective value (SV, right). The
value function used to fit the ratings was the CES utility function. CES =
constant elasticity of substitution.

To go a step further, we tested whether ideas provided by
Group 1 during FGAT Distant were overall less frequent than
Distant ideas provided by Group 2. The comparison was
significant, two-sample, one-sided ¢ test: #67) = —1.812,
p = .037.

To summarize, individuals who favor originality in their
likeability ratings prefer more creative ideas and provide more
creative ideas compared to individuals who favor adequacy.

Discussion

The first aim of our study was to determine whether subjec-
tive valuation occurs during idea generation and define a
valuator module from the decision-making tasks. Overall, these
results indicate that subjective valuation occurs during idea
generation, as we observed significant relationships between
response speed and likeability ratings in the generation task,
with preferred responses being provided faster. This result can
be interpreted as a form of behavioral energization, which
mechanisms need to be better understood. The choice task
allowed us to verify that likeability was the most relevant
dimension that participants used to choose between options,
consistent with previous studies on value-based decision-
making (Lopez-Persem et al., 2017, 2020).

The rating tasks have allowed us to characterize how
likeability is built from the adequacy and originality of ideas.
Overall, participants overweighted adequacy (weight param-
eter) and preferred responses with balanced originality and
adequacy compared to unbalanced responses (convexity
parameter). This result is in line with previous literature
showing that originality tends to be openly or theoretically
valorized but depreciated in practice (Blair & Mumford,
2007; Mueller et al., 2012). Nevertheless, it is essential to
highlight here that participants overall take into account both
dimensions, but vary in the way they do it: Some individuals
favor high originality over high adequacy in their likeability

judgment (high o parameter), while others favor equilibrium
between the two dimensions (& lower than 1).

Importantly, we found that this equilibrium (through the o
parameter) seems to be influential in participant’s creativity:
Participants overweighting originality in their preference
provide less frequent ideas and thus more creative ideas.

The utility function fitting also constitutes the development
of the valuator module in our general computational model,
as the CES utility function, which builds a subjective value
from adequacy and originality ratings.

In the next section, we will address the other aims of this
study and develop a computational model that aims at
disentangling how valuation differentially impacts explora-
tion and selection processes underlying creative ideation.
Two nonexclusive alternative hypotheses exist. Valuation
either influences the exploration phase: navigating from one
idea to another when searching for a creative idea is biased by
preferences, or the selection phase: among the considered
ideas, the one with the highest likeability is selected.

Computational Modeling of Empirical Data
Method

To develop our computational model, we focused on its
three modules separately. The explorer module was developed
using simulations with semantic networks, and the valuator
and selector modules were developed using model fitting
and model comparisons. Model simulations aim at generating
surrogate data that are then analyzed and compared to human
data. Model fitting aims at adjusting the parameters of equa-
tions at the individual level to match the data. Model compari-
son aims at determining which equation better matches the data
(at the group level), once the parameters have been estimated.

We first explain below the model fitting and comparison
procedures that we used. Then, we explain how we modeled
the valuator (partially based on analyses conducted in the
empirical study) for all participants.

Then, as the second aim of the present study was to identify
whether likeability influences exploration or selection and to
develop the full model, we explain how we simulated data
from various versions of the explorer and how we developed
the selection module.

Next, to address the third aim of this study, we combined the
three modules to get a “full” model and generated surrogate
data to compare the model behavior to participants’ behavior.

Finally, to assess the relevance of model parameters to
creative abilities (fourth aim), we conducted a canonical corre-
lation analysis.

General Procedure for Model Fitting and Comparison

Every model/module was fitted at the individual level to
ratings and choices using the Matlab variational Bayesian
analysis toolbox (https://mbb-team.github.io/VBA-toolbox/),
which implements variational Bayesian analysis under the
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Laplace approximation (Daunizeau et al., 2009; Stephan et al.,
2009). This iterative algorithm provides a free-energy approx-
imation to the marginal likelihood or model evidence, which
represents a natural trade-off between model accuracy (good-
ness of fit) and complexity (degrees of freedom; Friston et al.,
2007; Penny, 2012). Additionally, the algorithm provides an
estimate of the posterior density over the model-free parame-
ters, starting with Gaussian priors. Individual log-model evi-
dence was then taken to group-level random-effect Bayesian
model selection (random-effect analysis Bayesian model
selection) procedure (Rigoux et al., 2014; Stephan et al.,
2009). Random-effect analysis Bayesian model selection pro-
vides an exceedance probability (Xp) that measures how likely
itis that a given model (or family of models) is more frequently
implemented, relative to all the others considered in the model
space, in the population from which participants were drawn
(Rigoux et al., 2014; Stephan et al., 2009).

We conducted the first model comparison to determine
which variable (adequacy A, originality O, or likeability L)
best explained choices (see Supplemental Methods, Rela-
tionship Between Choices and Ratings section). The second
model comparison was performed to identify which utility
function (valuator module) best explained how originality
and adequacy were combined to compute likeability (see the
Likeability Ratings Relationship With Adequacy and Origi-
nality Ratings section). The third one aimed at establishing
relationships between adequacy and originality ratings and
associative frequency of cues and responses (Methods Ade-
quacy and Originality Ratings Relationship With Associative
Frequency). The fourth one aimed at identifying the best
possible input variable for the selector module (see the
Decision Functions as the Selector Module section).

Valuator Module: Combining Likeability,
Originality, and Adequacy of the Rating Tasks
With Responses Associative Frequency

For all participants, the ratings were used to estimate the
likeability of a given response to a cue from its adequacy and
originality (see the Likeability Ratings Relationship With
Adequacy and Originality Ratings section), themselves esti-
mated from its associative frequency.

We investigated how adequacy and originality were linked
to associative frequency F; between a cue (c) and a response
(1). We tested for linear and nonlinear relationships between
adequacy/originality and frequency using polynomial fits of
second order. For each dimension X (A or O), we compared
three models:

X; = pi log(F,), (13)
X; = py log (F.;), (14)
X; = pblog(F,) + p¥log (F,)>. (15)

pk corresponds to the linear regression coefficient and p% to
the quadratic regression coefficient.

Model Identification Group and Test Group

For the next analyses, we randomly split our group of
participants into two subgroups, one group to develop the
explorer and selector modules (two third of the group: 46
subjects) and one group to validate the full model (combina-
tion of the explorer, valuator, and selector modules) by
comparing its behavioral prediction to the actual behavior
of the participants (23 subjects).

Modeling the Explorer Module

We modeled the explorer module following a three-step
procedure. First, we built semantic networks (for each cue)
from a database available online to which we added the
participant’s responses. Then, we developed random walks
that would wander into those networks according to different
rules (biased by associative frequency or likeability, for
instance). Finally, we compared the probabilities of those
random walks to reach the First and Distant responses (nodes)
of each participant for each cue during their trajectories in the
semantic networks.

Construction of Semantic Networks. For each FGAT
cue, we built a semantic network based on the Dictaverf
database and the FGAT responses from the current data set.
Each network corresponds to an unweighted and undirected
graph (an edge linked two nodes if the frequency of
association between them was higher than 0). See details
in Supplemental Methods.

Random Walks Variants and Implementation. We
used censored random walks that start at a given cue and
walk within their associated network N. Censored random
walks have the property of preventing return to previously
visited nodes. In case of a dead end, the censored random walk
starts over from the cue but does not go back to previously
visited nodes. The five following variants of censored random
walks were applied to the semantic networks to simulate
potential paths.

* The random walk random was a censored random
walk starting at the cue and with uniform distribu-
tion of probabilities of transition from the current
node to each of its neighbors (excluding previously
visited nodes).

* The random walk frequency (RWF) was a cen-
sored random walk biased by the associative fre-
quency between nodes, where the probability of
transition from one node to another one is defined
as follows:
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r_ L

YO Ey

with Py the probability of transition to node j, F;; the
frequency of the association (in the C matrices
described in the Supplemental Methods) with the
current node i, and j all the other nodes linked to the
current node 7.

(16)

¢ Three additional censored random walks were run.
They were biased by adequacy, originality, or like-
ability of association between nodes and cue, where
the probability of transition from one node to another
one is defined as follows:
X,
PY ===

XXy

with P,’; the probability of transition from node i to
node j, X,; the estimated adequacy, originality, or
likeability of the node j with the cue node c, j are all
the nodes linked to the current node i.

a7

Estimated adequacy, originality, and likeability of all the
network nodes (X;) were computed based on the model com-
parison results performed in the first section (see the Valuator
Module: Combining Likeability, Originality, and Adequacy of
the Rating Tasks With Responses Associative Frequency
section). The following equations were consequently used:

A; = pglog(F ), (18)

0; = phlog(F,;) + pd log (F,;)?, (19)
;

L= («0f + (1 = 04?)", (20)

with F; as the frequency of association between the node and
the cue (and see Supplemental Methods).

The number of steps performed by each random walk was
constant across cues and participants and was defined by the
median fluency score among the group, that is, 18 steps,
resulting in no more than 17 visited nodes.

Probability of Reaching First and Distant Responses
for Each Participant and Cue. We computed the proba-
bility of reaching the First and Distant responses (targets 7'
from a starting node cue (c) for each type of random walk as
follows:

z j=T
ra=Y 11 7o e
G=a j=¢

L,jeG
with G representing all possible paths between ¢ and T,
ranging from the shortest one (a) to the longest one (z; limited

to 18 steps), and i and j all pairs of nodes belonging to each
path, linked by a transition probability P;;. In other words, it
corresponds to the sum of the cumulative product of edge
weights for all the possible paths between the cue and the
target shorter than 18 steps.

Decision Functions as the Selector Module

Next, we intended to decipher the criteria determining the
selection of a given response. We compared seven criteria:
random values, node rank (first visited nodes have higher
chances of being selected), estimated adequacy, estimated
originality, interaction between estimated adequacy and
originality, sum of estimated adequacy and originality, and
estimated likeability.

For each subject and cue, we simulated RWF as described
above and retained the paths that contained both the First
and Distant response of the subject for further analyses (the
number of excluded cues ranged between 0 and 31 trials
over 62, M = 9.04 trials, exclusion mainly due to missing
responses from participants either in the FGAT First or
Distant condition).

Using the variational Bayesian analysis toolbox, we fitted
the choices (response First or response Distant) that subjects
made among the hypothetically visited nodes (obtained by
RWF simulations) for each trial using the following softmax
functions:

r e_X:,t/BF
PR = S mwm @)
e~ (XL 1)/'3[)
P(RY,) = (23)

ZZ:I e(_Xk,z/ﬁD) ’

P is the probability of node i being selected as a response (R)
in the First (F) or Distant (D) conditions for a given cue,
among all the possible nodes k belonging to the n options
from the paths at trial . X corresponds to the values within
seven different possible inputs (criteria defined earlier). p*
and p” are free parameters estimated per subject, correspond-
ing to the temperature (choice stochasticity).

We then compared the seven models for the First and
Distant response separately and reported the results of the
model comparison in the results. Details of the input structure
are in Supplemental Methods.

Cross-Validation of the Model: Comparing the
Surrogate Data to Human Behavior

To simulate the behavior of the remaining 23 subjects, we
combined all the previously described modules together.

Concretely, we applied RWF with 18 steps on the built
networks (see the Construction of Semantic Networks
section) and assigned values to each visited node according
to each subject’s valuator module parameters. The list of
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visited nodes (candidate responses) for each cue and each
subject was simulated without the constraint of containing
participants’ First and Distant responses. The selection was
made using an argmax rule on adequacy (winning criteria
for the selector module) for the First response and on
likeability (winning criteria for the selector module) for
the Distant response (as we do not have the selection
temperature parameters p° and PP for those remaining
subjects). We ran 100 simulations per individual following
that procedure.

The rank in the path was used as a proxy for response time,
and we analyzed surrogate data in the exact same way as
subjects’ behavior.

For statistical assessment, regression estimates of ranks
against frequency, steepness, and estimated likeability were
averaged across 100 simulations per individual, and signifi-
cance was addressed at the group level (one representative
simulation was used in Figure 5 and Supplemental Figure S6).
For this analysis, the group frequency of response was com-
puted instead of Dictaverf associative frequency to (a) avoid
any confounds with the structure of the graph, built with
Dictaverf, and (b) compare the distribution of frequencies
relative to the group.

Canonical Correlation Between Creativity Scores,
FGAT Task, and Model Parameters

To investigate the link between creative abilities and our
task and model parameters, we extracted the individual task
scores and model parameters and grouped them into the
label “FGAT scores and parameters.” We pooled the scores
obtained from the battery of creativity test and labeled them
“Battery scores.” We conducted a canonical correlation
between those two sets of variables and checked for signif-
icance of correlation between the computed canonical
variables of each set. Note that a canonical correlation
analysis can be compared to a principal component analy-
sis, in the sense that common variance between two data
sets is extracted into canonical variables (equivalent to
principal components). Canonical variables extracted for
each data set are ordered in terms of strength of correlations
between the two data sets. Each variable within a data set
has a loading coefficient that indicates its contribution to
the canonical variable. Here, we extracted the coefficients
of each variable on its respective canonical variable and
reported them.

Results
Computational Modeling of the Valuator Module

The goal of our computational model is to explain and
predict the behavior of participants in the FGAT, by
modeling an explorer that generates a set of candidate
ideas, a valuator that assigns a subjective value to each

candidate idea, and a selector that selects a response based
(or not) on this subjective value. Our computational model
thus needed to be able to predict the likeability of any
potential cue—response associations, including those that
have not been rated by our participants (see the Valuator
Module: Combining Likeability, Originality, and Ade-
quacy of the Rating Tasks With Responses Associative
Frequency section) and those that have not been expressed
by participants during the FGAT Distant condition (hidden
candidate ideas).

We found that adequacy and originality ratings could be
correctly predicted by associative frequency (see Supplemental
Results and Supplemental Figure S4). Adequacy ratings could
be well fitted through a linear relation with frequency (Efj;, =
0.86, Xpyin = 1), and originality could be estimated through a
mixture of linear and quadratic links with frequency. This
result allows us to estimate the adequacy and originality of any
cue-response association for a given participant.

Importantly, we explored the validity of the valuator
module using estimated adequacy and originality. We esti-
mated likeability from the estimated adequacy and original-
ity, using the individual parameters of the CES function
mentioned above. We found a strong relationship between
estimated and real likeability judgments, M r = 0.24 + 0.02,
#(68) = 11.04 p = 8.107"".

This result is not only a critical validation of our model
linking likeability, originality, and adequacy but also allows
defining a set of parameters for each individual for the valuator
module. Thanks to that set of parameters, we could signifi-
cantly predict any cue-response association’s originality,
adequacy, and likeability ratings based on its objective asso-
ciative frequency. Henceforth, in the subsequent analyses,
likeability, adequacy, and originality estimated through that
procedure will be referred to as the “estimated” variables.

In the next section, using computational modeling, we
address the second aim of our study, which was to develop
the explorer and the selector and determine which module the
valuator drives the most.

Computational Modeling of the Exploration and
Selection Modules

Model Description and Overall Strategy. As we do not
have direct access to the candidate ideas that participants
explored before selecting and producing their response to
each cue during the FGAT task, we adopted a computational
approach that uses random walk simulations ran on semantic
networks (one per FGAT cue) to develop the explorer
module. We built a model that coupled random walk simula-
tions (explorer) to a valuation (valuator) and selection (selec-
tor) function (Figure 1). The model takes as input an FGAT
cue and generates responses for the First and Distant condi-
tions, allowing us to ultimately test how similar the predicted
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Figure 5
Response Speed for the Participants and Surrogate Data of the Test Group (n = 23)
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Note. (A, B) Correlation between response time RT (A) or node rank (B) in the FGAT task and the response frequency for the First (yellow) and Distant
(orange) conditions. (C, D) Correlation between response time RT (C) or node rank (D) in the FGAT task and the cue steepness for the First (yellow) and Distant
(orange) conditions. (E, F). Correlation between response time RT (E) or node rank (F) in the FGAT task and likeability ratings (E) or estimated likeability (F) of
the FGAT responses for the First (yellow) and Distant (orange) conditions. Circles indicate binned data averaged across participants. Error bars are intersubject
SEM. Solid lines correspond to the averaged linear regression fit across participants, significant at the group level (p < .05). Dotted lines indicate that the
regression fit is nonsignificant at the group level (p > .05). In (A), (B), (E), and (F), transparent bars correspond to the average number of responses per bin of
frequency (A, B) or likeability (E, D). Note that the surrogate data presented in the figure correspond to one simulation (among 100) that is representative of the
statistics obtained over all simulations and reported in the text. RT = response time; FGAT = Free Generation of Associations Task; SEM = standard error of

the mean.

responses from the model were to the real responses of the
participants.

In the following analyses, we decompose the model into
modules (random walks and selection functions) and inves-
tigate by which variable (estimated likeability, estimated
originality, estimated adequacy, associative frequency, or
mixtures) each module is more likely to be driven.

To assess the model’s validity, we developed it, conducted
the analyses on 46 subjects (two third of them), and then
cross-validated the behavioral predictions on the 23 remain-
ing participants.

Modeling the Explorer Module Using Random Walks
on Semantic Networks. For each cue, we built a semantic
network from the Dictaverf database that was enriched from
both First and Distant FGAT responses from all participants
(see the Construction of Semantic Networks section). Then,
to investigate whether exploration could be driven by like-
ability, we compared five censored random walks, each with
different transition probabilities between nodes (random,
associative frequency, adequacy, originality, or likeability,
see Random Walks Variants and Implementation section).
For each random walk, subject, and cue, we computed the

random walk’s probability of visiting the First and Distant
responses nodes (Supplemental Figure S5A). We found that
the frequency-driven random walk (RWF) had the highest
chance of walking through the First (mean probability = 0.30
+0.01; all p < 107°?) and Distant (mean probability = 0.05 +
0.004; all p < 1074 responses. This result suggests that the
explorer module may be driven by associative frequency
between words in semantic memory. According to this result,
we pursued the analyses and simulations with the RWF as an
explorer module for both First and Distant responses.
Visited Nodes With the RWF as a Proxy for Candidate
Responses. To define sets of candidate responses that will
then be considered as options by the selector module, we
simulated the RWF model for each subject and each cue over
18 steps (see the Probability of Reaching First and Distant
Responses for Each Participant and Cue section). Each random
walk produced a path: that is, a list of words (nodes) visited at
each iteration. Each node is associated with a rank (position in
the path), which will then be used as a proxy of response time.
As a sanity check, we compared the list of words obtained
from those random walks to the participants’ responses to a
fluency task on six FGAT cues (see Battery of Creativity Tests
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section). We identified the common words between the model
path and the fluency responses for each subject. Then, using a
mixed-effect linear regression with participants and cues as
random factors (applied to both intercept and slope), we
regressed the node model rank against its corresponding
fluency rank. We found a significant fixed effect of the fluency
rank, B =0.12+0.03, #(649) = 3.35, p = 8.10~>, Supplemental
Figure S6, suggesting that those simulations provide an ade-
quate proxy for semantic memory exploration.

Together, results reported in the two last sections suggest
that a censored random walk driven by the frequency of word
associations provides a good approximation of semantic
exploration during response generation in the FGAT task
and that likeability has a negligible role during that phase.
Hence, valuation does not seem to play a significant role in
the explorer module.

Modeling the Selector Module as a Decision
Function. We then explored the possible factors driving
individual decisions to choose a given response (selector
module) among the word nodes visited by the explorer
module.

To investigate the selection of First and Distant responses
among all nodes in each path, that is, on which dimension
responses were likely to be selected, we compared seven
choice models with different variables as input: random
values, node rank (first visited nodes have higher chances
of being selected), estimated adequacy, estimated originality,
interaction between estimated adequacy and originality,
sum of estimated adequacy and originality, and estimated
likeability (see the Decision Functions as the Selector
Module section). We found that estimated adequacy was
the best criterion to explain the selection of First responses
(Efadgequacy = 0.89, XPagequacy = 1) and likeability was the
best criterion to explain the selection of Distant responses
(Eflikeability = 066, Xplikeability = 099, Supplemental Figure
S5B). These results indicate that valuation (based on indi-
vidual likeability) is needed to select a creative response in
the creative condition of the FGAT (Distant).

Validity of the Full Model: Does It Predict
Behavioral Responses in the Test Group?

The next analyses address our third aim to confront
simulated and observed data. After having characterized
the equations and individual parameters of the valuator on
all participants using the rating tasks and of the explorer and
selector modules on a subset of participants (n; = 46), we
checked whether this model could generate surrogate data
similar to the behavior of the remaining participants (test
group, n, = 23). We simulated behavioral data and response
time from the full model (explorer, valuator, selector), de-
picted in Figure 1 (see the Cross-Validation of the Model:
Comparing the Surrogate Data to Human Behavior section).

We analyzed the behavior of the simulated data the same
way we analyzed the behavior of the real human data of the test
group. We found the same patterns at the group level (Figure 5,
Supplemental Table S2 and Figure S6): (a) First responses
were much more common than Distant responses (Figure 5A,
B); (b) the rank in path decreased with the group frequency of
responses, both for First and Distant responses (Figure 5A, B),
confirming that it takes more time to provide a rare response
compared to a common one; (c) ranks decreased with the cue
steepness, both for First and Distant responses (Figure 5C, D);
(d) ranks of the Distant responses decreased with estimated
likeability. The effect was significant only for Distant re-
sponses, and the difference between regression estimates
for First and Distant responses was significant (Figure 5E,
F); (e) First responses were more appropriate than Distant
responses, but Distant responses were more original than First
responses. The difference in originality rating between the
First and Distant responses was bigger than the difference in
adequacy (Supplemental Figure S7).

Additionally, we checked whether the surrogate data gen-
erated by the model for each participant was relevant at the
interindividual level. We estimated the selector parameters
for the test group and conducted the analyses on all partici-
pants to increase statistical power. We found that the mean
response time per participant across trials of the FGAT
Distant condition was correlated with the mean rank of
Distant responses across trials in the model exploration
path (r=0.72,p = 1.10_4). Similarly, the mean associative
frequency (Dictaverf’) of participants’ Distant responses was
significantly correlated with the mean frequency of the model
Distant responses (r = 0.53, p = 9.107%). These results mean
that the model successfully predicted individual behavioral
differences in the FGAT task.

Relevance of Model Parameters for Creative Abilities

Finally, to address our fourth aim and assess the relevance of
the individual model parameters in relation to the FGAT task
for creative abilities, we defined two sets of variables: FGAT
parameters and scores reflecting the valuator, selector, and
explorer individual characteristics, and Battery scores related
to several aspects of creativity (see the Battery of Creativity
Tests section and Supplemental Methods). We conducted a
canonical correlation analysis between those two sets in all
participants and found one canonical variable showing signif-
icant dependence between them (r = 0.61, p = 0.0057). When
assessing which variables within each set had the highest
coefficient to the canonical score, we found that the two
likeability parameters (o and 8, from the valuator), the
inverse temperature (choice stochasticity), from the choice
task (B choice), and from the Distant response selection (B>,
from the selector; see Supplemental Results and Methods,
Relationship Between Choices and Ratings section), and the
First response associative frequencies were significantly
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contributing to the FGAT canonical variable. Additionally,
fluency score from the fluency task and from the AUT,
creativity self-report, and PrefScore (self-report of preferences
regarding ideas) significantly contributed to the Battery canon-
ical variable. No significant contribution was observed from
creative activities (C-Act) and achievements (C-Ach) in real-
life scores (Supplemental Table S3, Figure 6). Overall, this
significant canonical correlation indicates that measures of
valuation and selection relate to creative behavior.

Discussion

Thanks to the computational modeling of empirical data,
we addressed the second, third, and fourth aims of our study,
which were (2) developing the explorer and selector modules
and characterizing which module(s) relies on subjective
valuation (explorer and/or selector); (3) simulating surrogate
data from the full model composed of the three modules and
comparing it to human behavior; and (4) assessing the
relevance of the model parameters for creative abilities.

We have developed a computational model that includes
three modules: an explorer, a valuator, and a selector. Through

successive Bayesian model comparisons, we have found that
the explorer is more likely to be driven by associative fre-
quency of ideas than likeability of ideas, that the valuator
integrates both adequacy and originality of ideas, and that the
selector uses likeability to generate a final output for the
creative idea generation. The model makes behavioral predic-
tions that are accurate both at the group level (general relation-
ship between response time and frequency of responses, for
instance) and at the individual level (given a set of valuation
parameters specific to an individual, it predicts whether this
individual will be fast or slow to provide creative responses,
for instance). Finally, the model parameters, together with
the behavior in the FGAT, are predictive of creative abilities
evaluated with a battery of creativity tests, suggesting that this
model is relevant to creative abilities.

General Discussion

Using data from an empirical study combining creativity
tasks and decision-making tasks, as well as computational
modeling from those data, we provided empirical and compu-
tational evidence in favor of the involvement of subjective

Figure 6
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valuation in creativity. We found that subjective value en-
ergizes the participants’ behavior during idea generation and
is driving the selection of ideas (more than the exploration
of ideas).

Preferred Associations Are Produced
Faster When Thinking Creatively

Using the FGAT task, previously associated with creative
abilities (Bendetowicz et al., 2017), we found that Distant
responses were overall more original and slower in response
time than First responses. In addition, response time decreased
with steepness (only for First) and cue-response associative
frequency. Those results are in line with the notion that it takes
time to provide an original and rare response (Beaty & Silvia,
2012; Christensen et al., 1957).

Critically, we identified that the likeability of Distant re-
sponses was negatively linked to response time and positively
linked to typing speed. Interpretation of response time can be
challenging as it could reflect the easiness of choice (Ratcliff &
Rouder, 1998), the quantity of effort or control required for
action (Botvinick et al., 2001), motivation (Niv, 2007), or
confidence (Ratcliff & Starns, 2009). In any case, this result,
surviving correction for potential confounding factors (see the
FGAT Behavior: Effect of Task Condition on Speed and Link
With Likeability section), represents evidence that subjective
valuation of ideas occurs during a creative (hidden) choice. To
our knowledge, this is the first time that such a result has been
demonstrated. With our computational model, we attempt to
provide an explanation of a potential underlying mechanism
involving value-based idea selection.

Subjective Valuation of Ideas Drives the
Selection of a Creative Response

The striking novelty our results reveal is the role of the
valuator module coupled with the selector module in idea
generation. These modules are directly inspired by the value-
based decision-making field of research (Levy & Glimcher,
2012; Lopez-Persem et al., 2020). To make any kind of goal-
directed choice, an agent needs to assign a subjective value to
items or options at stake so that they can be compared and one
can be selected (Rangel et al., 2008). Here, we hypothesized
that providing a creative response involves such a goal-
directed choice that would logically require the subjective
valuation of candidate ideas. After finding a behavioral
signature of subjective valuation in response time and typing
speed, we have shown that likeability judgments best ex-
plained Distant response selection among a set of options.
This pattern was similar to the behavior observed in the
choice task, explicitly asking participants to choose the
response they would have preferred to give in the FGAT
Distant condition. Assessing valuation processes during
creative thinking is highly relevant to understanding the
role of motivation in creativity, as decision-making research

shows that valuation is closely related to motivation process,
and it is assumed that subjective values energize behaviors
(Pessiglione et al., 2007). Previous studies have highlighted
the importance of motivation in creativity (Collins & Amabile,
1999; Fischer et al., 2019). However, those reports were
mainly based on interindividual correlations, while our study
brings new evidence for the role of motivation in creativity
with a mechanistic approach. Our model adds to this literature
by demonstrating novel, precise, and measurable mechanisms
by which motivation may relate to creative thinking at the
intraindividual level. Through computational modeling of the
empirical data, we showed how subjective valuation drove
idea selection. We did not find that subjective valuation drove
exploration better than associative frequency. This negative
result does not exclude a potential role of motivation in the
exploration phase of idea generation. Future investigations
using, for example, individual semantic networks will be
invaluable to confirm or deny the role of motivation and
value-based decision-making in the exploration phase, as
suggested by other authors (Lin & Vartanian, 2018). In any
case, our findings support the hypothesis that the BVS (some-
times called the reward system) is involved in creative thinking
and pave the way to later investigate its neural response during
experimental creativity tasks.

Our study reveals some mechanisms about how individ-
ual preferences are built and used to make creative choices.
We identified how originality and adequacy ratings were
taken into account to build likeability and determined prefer-
ence parameters (relative weight of originality and adequacy
and convexity of preference) to predict the subjective like-
ability of any cue-response association. Subjective likeability
relies on subjective adequacy and originality. The identified
valuation function linking likeability with adequacy and
originality, that is, the CES utility function, has been previ-
ously used to explain moral choices or economic choices
(Andreoni & Miller, 2003; Armington, 1969; Lopez-Persem
et al, 2017), making it an appropriate candidate for the
valuator module of our model. Overall, these results indicate
that likeability is a relevant measure of the individual values
that participants attributed to their ideas and inform us on
how it relies on the combination of originality and adequacy.

The second novelty of our study is to provide a valid full
computational model composed of an explorer, a valuator,
and a selector module. We characterized these modules
and brought an unprecedented mechanistic understanding
of creative idea generation. Moreover, this full model can
generate surrogate data similar to real human behavior at
the group and interindividual levels.

A Computational Model That Provides a
Mechanistic Explanation of Idea Generation

The computational model presented in the present study is
consistent with previous theoretical frameworks involving two
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phases in creativity: exploration and evaluation/selection
(Campbell, 1960; Kleinmintz et al., 2019; Lin & Vartanian,
2018; Mekern et al., 2019; Simonton, 1998; Sowden et al.,
2015). The explorer module was developed using random
walks, as it had been successfully done in previous studies to
mimic semantic exploration (Austerweil et al., 2012; Kenett &
Austerweil, 2016). Here, we found that the simulated semantic
exploration was driven by associative frequency between
words but was not biased by subjective judgments of like-
ability, adequacy, or originality. This result is consistent with
the associative theory of creativity (Mednick, 1962), which
assumes that creative search is facilitated by semantic memory
structure, and with experimental studies linking creativity and
semantic network structure (Benedek et al., 2020; Ovando-
Tellez et al., 2022) or word associations (Marron et al., 2018).
Indeed, the random walks that we compared could be com-
bined into three groups: purely random, structure-driven
(frequency-biased), and goal-directed (cue-related ade-
quacy, originality, and likeability biased). We found that
the structure-driven random walk outperformed the random
and goal-directed random walks, providing further evidence
that semantic search has a spontaneous, bottom-up compo-
nent. Overall, our model is thus compatible with several
theoretical accounts of creativity and extends them, for
instance, in terms of phases (generation/evaluation decom-
posed into exploration, valuation, and selection), or in terms
of associative theory (showing how spontaneous associa-
tions occur during the exploration phase).

Perspectives

Similar to a previous neurocomputational model of crea-
tive processes (Khalil & Moustafa, 2022), our computational
model presents the advantage of mathematically formalizing
what could be the cognitive operations implemented by the
brain during a creative search. This is of importance, as it
provides actual variables (such as the likeability of ideas at
each trial) that can be related to neural activity and thus
provide insight into the role of each brain region or network
involved in the creative process. For instance, the DMN has
been identified as a key network for creativity (Beaty et al.,
2014), yet it is unclear which computations the different brain
regions of this network implement. Our framework, which
includes valuation processes, implies that the BVS represents
the subjective value of ideas when searching for a creative
idea, as this brain network has been found to automatically
encode subjective values of any kind of item (Lopez-Persem
et al., 2020). Although the BVS has not been frequently
reported in previous studies, there is a substantial overlap
between the DMN and the BVS, notably in the ventromedial
prefrontal cortex and in the posterior cingulate cortex. It is
possible that regions considered as belonging to the DMN in
previous studies of creativity in fact pertain to the BVS
(which deals with idea valuation), while the DMN regions

are involved in idea exploration. This hypothetical dissocia-
tion has to be directly tested in subsequent studies.

The BVS is also in a good position to interact with the other
networks involved in creativity. When making a value-based
choice, the BVS interacts with the executive and salience
networks in different ways. First, the ECN, including the
dorsolateral prefrontal cortex, is thought to regulate—
through cognitive control—choices according to the context
and goal of the agent (Domenech et al., 2018; Gldscher et al.,
2012). For instance, when faced with a food choice between
healthy and unhealthy items, the dorsolateral prefrontal
cortex (dIPFC, hub of the ECN) has been found to upregulate
the weight of the healthy item in the decision (Hare et al.,
2009). In our framework, we could speculate that one
function of the ECN could be to upregulate the weight of
originality in the computation of likeability and favor more
creative outputs and avoid obvious ideas. Second, the
salience network, which includes the insula and dorsal
anterior cingulate cortex (dACC), is known in the neurosci-
ence of decision-making to integrate the decision value over
time to trigger an action selection (Hunt et al., 2014). If the
decision value is close to zero (difficult choice because
the two options have close values), the dACC may recruit
the dIPFC to exert some form of control over the choice
(better estimating the value of items at stake, for instance;
Shenhav et al., 2013). Interestingly, the salience network has
been proposed to balance the relative involvement of the DMN
and ECN in the generation and evaluation processes of creative
thinking (Beaty et al., 2016). Some authors have also linked
the salience network to a trade-off between exploration and
exploitation strategies (Lin & Vartanian, 2018). Thus, the
salience network could either play a role in the recruitment
of the ECN to exert some control or to balance the need
for exploration (knowledge exploration) and exploitation
(maintaining the ongoing idea or strategy; Kolling et al.,
2016). In any case, the value of ideas could be the key
missing element in the current framework of creativity. If
the value of the current idea is not high enough (low saliency),
exploration should be pursued or reestimation of value can
be performed. Otherwise, the current idea can be further
exploited. Future studies will help to specify the role of the
dACC and the salience network in creativity.

In future studies, we will assess the neural bases related to
the tasks presented in the present study, and we will focus on
the involvement of the BVS and salience network. Addi-
tionally, we will assess the generalization of the model with
drawings (Barbot, 2018) and AUT (Guilford, 1967). Build-
ing networks that could be explored by random walks
for those modalities will be challenging, but thanks to
the development of various artificial neural networks, sim-
ilarity matrices (and thus networks) of words (Word2Vec;
Mikolov et al., 2013), concepts (Bidirectional Encoder
Representations from Transformers; Devlin et al., 2019)
or drawings (Siamese networks; Chicco, 2021) can be built.
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Then, our model will require two inputs: the condition (First
or Distant), mimicking the goal of the participant, stated
in the instructions, and the domain (semantic, drawing, or
object use). Our framework predicts that only the structure
of networks modeling knowledge should differ between
modalities, and that valuation and selection functions should
be stable across domains.

Limitations

Some limitations of this study need to be acknowledged.
First, the present study assesses creative cognition in the
semantic domain. To fully validate our computational model
and the core role of preference-based idea selection, it is
necessary to apply similar analyses on other domains such
as drawings or music. Second, to build our model, we made
many assumptions, such as the structure of semantic networks,
and each of them should be tested explicitly in future studies.
Third, our main result concludes on the role of motivation and
preferences in idea selection, but their role in the exploration
process per se remains to be further understood.

Conclusion

The present study reveals the role of individual prefer-
ences and decision-making in creativity by decomposing
and characterizing the exploration and evaluation/selection
processes of idea generation. Our findings demonstrate that
the exploration process relied on associative thinking, while
the selection process depended on the valuation of ideas.
We also show how preferences are formed by weighing the
adequacy and originality of ideas. By assessing creativity at
the group level, beyond the classical interindividual assess-
ment of creative abilities, the present study paves the way to
a new framework for creativity research and places creativ-
ity as a complex goal-directed behavior driven by reward
signals. Future neuroimaging studies will examine the neural
validity of our model.
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