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Neuro-computational account of how mood
fluctuations arise and affect decision making
Fabien Vinckier1,2,3,4,5, Lionel Rigoux 1,2,6,7, Delphine Oudiette1,2,8 & Mathias Pessiglione1,2

The influence of mood on choices is a well-established but poorly understood phenomenon.

Here, we suggest a three-fold neuro-computational account: (1) the integration of positive

and negative events over time induce mood fluctuations, (2) which are underpinned by

variations in the baseline activities of critical brain valuation regions, (3) which in turn

modulate the relative weights assigned to key dimensions of choice options. We validate this

model in healthy participants, using feedback in a quiz task to induce mood fluctuations, and

a choice task (accepting vs. declining a motor challenge) to reveal their effects. Using fMRI,

we demonstrate the pivotal role of the ventromedial prefrontal cortex and anterior insula, in

which baseline activities respectively increase and decrease with theoretical mood level and

respectively enhance the weighting of potential gains and losses during decision making. The

same mechanisms might explain how decisions are biased in mood disorders at longer

timescales.
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People gamble more on a surprisingly sunny day or after the
unexpected victory of their favorite sport team1–4. Such
facts are classically considered as evidence for the influence

of mood on judgment and decision-making, which is also well
supported by clinical observations. Depressed patients tend to
neglect positive aspects, whereas manic patients tend to ignore
the potential negative consequences of their actions5–7. Mood-
congruent judgments have also been repeatedly observed in the
lab8–10, with the consistent finding that mood enhancement
favors risk taking11–13. Yet the mechanisms underlying this per-
vasive phenomenon are poorly understood. Two key insights
have been suggested recently: first a computational account of
how mood fluctuations could arise from the feedback that a
person receives14–16, second the demonstration that pre-choice
activity in specific brain regions exerts a bias on value-based
judgment and choice17,18. The aim of the present study is to put
these pieces together, and to extend current understanding by
explaining how mood distorts the valuation process underlying
choice. In short, our objective was to provide a comprehensive
neuro-computational model of how mood fluctuations arise and
influence choice under risk.

The first step was to account for how history of feedback
translates into fluctuations in mood level. For this part, we took
inspiration from recent suggestions that mood level reflects a
weighted integration of expectations and outcomes, with an
exponential decay over time14. Such simple models provide a
good fit of mood (or momentary happiness) ratings provided by
participants playing with slot machines. Later models have
included a reciprocal influence of mood on the perception of
feedback15, such that good mood induces a “rosy outlook”, taking
events as more positive than they objectively are. The two-way
interaction between mood and feedback was shown to bias the
learning of payoffs associated with slot machines, particularly in
subjects with hypomanic personality. Importantly, using com-
putational modeling enables tracking the neural correlates of
mood level without asking subjects to rate their mood, which
could by itself interfere with the choices.

The second step was to identify the brain regions expressing
mood level in their baseline activity, during the rest period
between last feedback and next choice. To our knowledge, pre-
vious studies did not exactly address that question, but rather
looked for neural responses to stimuli triggering emotional
reactions19–22 that are short-lived compared to mood states.
Indeed, mood should fluctuate at a longer timescale, and should
be less tightly linked to a single event. However, because mood
level varies with positive and negative feedback, candidate regions
could be inferred from the literature on reward vs. punishment
(or appetitive vs. aversive) processing. On the one hand, the
reward circuit mainly includes the limbic frontostriatal pathway,
linking the ventromedial prefrontal cortex (vmPFC) to the ventral
striatum (vS), under the influence of mesocorticolimbic dopa-
minergic projections23,24. This pathway has also been implicated
in the so-called brain valuation system, whose activity positively
correlates with the value of various items such as money, food,
music, painting, faces etc.25–28 On the other hand, the pain
matrix mainly includes the anterior insula (aIns) and anterior
cingulate cortex (ACC). It is known to activate with aversive
stimuli, from pain to social rejection29–32. Thus, a priori candi-
dates for reflecting mood level were vmPFC and vS (with positive
correlation) and aIns and ACC (with negative correlation).

The third step was to explain how mood-related baseline
activity could influence choice under risk. Previous studies have
shown that brain activity preceding stimulus presentation could
bias valuation and choice. For instance, higher firing rate in
monkey VMPFC was shown to predict more lipping (an appe-
titive Pavlovian reflex) in response to reward-associated cues, and

similarly higher functional magnetic resonance imaging (fMRI)
activity in human VMPFC was predictive of paintings being later
judged as more pleasant18. In another monkey study, pre-
stimulus activity of single neurons in the orbitofrontal cortex was
predictive of an additional bias on choices between reward-
associated cues on top of their subjective value17. Also, pre-
stimulus multivariate activity in vS and medial frontal cortex was
predictive of the propensity to take risk in a lottery task33, and
anticipatory neural activity in vS vs. aIns was predictive of risk-
seeking vs. risk-averse suboptimal choice, reciprocally34. How-
ever, these effects of pre-stimulus activity were independent of
stimulus content and could not explain how mood-related base-
line activity influences the integration of the different features of
choice options. To specify this influence, we first adapted a
normative choice model from expected utility theory to our
choice task and then investigated which parameters of this model
may be affected by mood-related baseline activity.

Our results support a neuro-computational account in which
feedback-induced mood fluctuations are underpinned by baseline
activity in relevant valuation networks (notably vmPFC and aIns),
which in turn affects the relative weights assigned to the different
dimensions of choice options (notably gain and loss prospects).

Results
General approach. In the present study, participants performed
two unrelated but interleaved tasks, separated by a few seconds
rest period. The first was a quiz task used as a mood induction
procedure35,36, the second was a choice task used to unravel the
effects of mood induction on decision-making (Fig. 1). In the quiz
task, participants had to answer general knowledge questions and
received feedback (correct or incorrect response). Unbeknownst
to them, quiz difficulty and feedback were biased so as to create
episodes of high and low correct response rate. In the choice task,
participants had to decide whether to accept or decline a motor
precision challenge, consisting in squeezing a handgrip so as to
hit a force target (around 25% of maximal force). Difficulty level
(target size), gain prospect (in case of success), and loss prospect
(in case of failure) were varied on a trial-by-trial basis. In order to
avoid learning effects, and additional effects on mood, no feed-
back was provided regarding motor precision. Participants were
explicitly informed that the two tasks were independent, such that
responses in the quiz had no influence onto difficulty level or
monetary prospects.

Three independent datasets (n= 15, 23, and 23 participants)
were acquired, with minor modifications of the design (see
Methods section for details). The first dataset was acquired during
a pilot study conducted in order to adjust the choice model. The
second dataset was acquired using a variant of the task where
ratings of mood (how well subjects felt) were inserted during the
rest period between quiz and choice tasks, in order to adjust the
mood model. We also included confidence ratings (about success
in the next motor challenge), to confront the specificity of the
mood model. A theoretical mood level (TML) could then be
inferred from the history of tasks events, using the mood model.
The third dataset was acquired during an fMRI study, in which
we identified the neural correlates of TML and their effects on the
parameters of the choice model. Thus, the origins and
consequences of mood fluctuations were explored without
subjects having to report their mood level, which could have
artificially determined their choice behavior.

The aim of data analysis was to provide a neuro-computational
description of how mood fluctuations arise and affect choices.
Our general strategy (illustrated in Fig. 2) was (1) to build
separate models of choice and mood level that provide the best
trade-off between accuracy and complexity, (2) to identify the
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neural markers of TML predicted by the mood model, and (3) to
specify how these neural markers would modulate the parameters
of the choice model.

Computational model of choice. Choice data were acquired in
all three experiments. Before modeling, we checked that the three
dimensions of prospects (target size, gain, and loss) were sig-
nificantly integrated into choices (all p-values < 0.001, two-tailed
t-tests, Fig. 3a). The aim of computational modeling here was to
provide the best possible account of how the three dimensions
were combined to generate choices.

The best model according to Bayesian model selection (see
Methods section) was the same in all three datasets (exceedance
probability xp= 0.76, 0.73 and 0.95 for experiments 1, 2 and 3
respectively; xp= 0.99 when pooling the three datasets). This
model (detailed in Fig. 2, fit illustrated in Fig. 3) is based on
expected utility theory, with Utility(accept) calculated through
multiplication of potential gain and loss by probability of success
vs. failure (inferred from target size), the gain and loss terms
being weighted by distinct parameters (kg and kl) but without any
curvature (no power parameter). The absence of curvature might
relate to the fact that gains and losses were maintained within a
limited range (1–5€). Utility(accept) is then compared to a
constant Utility(decline) in a softmax function to calculate
probability of acceptance. This indicates that subjects were only

estimating Utility(accept) from the new prospect proposed every
trial, and were neglecting the variations of Utility(decline) related
to the changes in target size.

We used the choice model to regress out the prospect factors
(gain, loss, and target size) and check that mood was indeed
predictive of the willingness to accept the motor challenge. The
residual error of choice model fit was thus regressed against mood
rating. This association was significantly positive at the group
level (t(22)= 2.3, p= 0.028, Fig. 3b), indicating that mood rating
explain choice above and beyond the factors manipulated in the
choice task.

Computational model of mood. Before modeling, we verified
that our mood induction procedure was efficient. Indeed, mood
was higher during task episodes biased toward more frequent
correct feedback, relative to less frequent correct feedback
(t(22)= 3.7; p= 0.001, Fig. 4a).

The aim of computational modeling here was to provide the
best possible account of how the variables manipulated in the
quiz and choice tasks affected the mood and/or confidence ratings
recorded in experiment 2. Following on previous work14, we
expected mood to be influenced not only by outcomes but also by
expected value (EV) and reward prediction error (RPE) from
both tasks, an influence that would decay exponentially with time.
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<1.5 s

Accept ?
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Good answer !

1 s

- Atmospheric pressure
- Wind speed
- Magnetic field
- Relative humidity
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What does an
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Fig. 1 Behavioral tasks. a Trial structure. Each trial included two unrelated tasks. In the quiz task (left), participants had to select one of four possible
answers to a general knowledge question. In the choice task (right), participants had to decide between accepting or declining a motor challenge. The two
tasks were separated by a rest period. In a subset of participants, subjective ratings of mood (or confidence) were inserted into the rest period. b Motor
challenge. The challenge consisted in squeezing a handgrip such that the force peak would fall within a window around 25% of their maximal force. The
green line represents a successful trial. Participants could fail because they squeezed too much (upper red line), not enough (lower red line) or for too long
(more than 400ms, black line). The challenge varied across trials along three dimensions that were indicated at the time of choice: difficulty, represented
by the size of the target window (in green on a red thermometer), expected gain in case of success, represented by a bunch of regular 10-cent coins (in the
upper part) and expected loss in case of failure, represented by a bunch of 10-cent crossed coins (in the bottom part). If subjects declined the challenge,
they still had to squeeze the handgrip and try to hit the target window, but the stakes were minimized (expected gain and loss were fixated at 50 cents)
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However, the best model (xp= 0.97, Fig. 4b, c and Supple-
mentary Fig. 1) according to Bayesian model selection (see
Methods section) was a simplified one in which only the quiz task
(and not choice task) was influential, through an influence of
feedback only, this influence being asymmetric for positive and
negative feedback. Interestingly, as in previous studies, this best
model formalizes a reciprocal influence between mood and
feedback (see Equations in Fig. 2): feedback weight ωf was
significantly positive across participants (t(22)= 4.3, p < 0.001),
meaning that positive feedback induced better mood, and so was
mood weight δ (t(22)= 2.8, p= 0.01), meaning that better mood
led to perceiving feedback as better than it was. Parameter ωt was
significantly negative (t(22)=−3.0, p= 0.006), indicating that
mood level globally decreased with time on task.

In contrast, the best model identified for confidence ratings was
the null, in which no task-related variable had any influence
(xp= 0.80). This suggests that the quiz task did impact mood and
not what subjects reported as their confidence in the motor precision

task. We therefore focus on mood fluctuations (as approximated by
the TML generated by the best model) in the following, and looked
for neural correlates in the fMRI data, which were recorded in the
absence of mood ratings (experiment 3).

Brain activity underpinning mood fluctuations. The best mood
model, with parameters corresponding to posterior means aver-
aged across participants in experiment 2, was applied to the
individual history of feedback in order to generate trial-by-trial
TML for each participant in experiment 3 (where there was no
mood rating). To assess whether mood level could be reflected in
post-feedback activity of critical brain regions, we included TML
as a parametric modulator of the rest period between the quiz and
choice tasks (modeled as a boxcar), in GLM used to analyze fMRI
data. Note that the rest period corresponds to the time window
where mood level was probed in experiment 2. The general linear
model (GLM) also included quiz question, answer and feedback
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Fig. 2 Computational modeling. The figure illustrates the best models that were selected using group-level random-effect analyses. a Best mood model.
Theoretical mood level (TML) was computed as an integration of quiz feedback, with an exponential decay. This feedback was subjective, as its perception
was in return biased by TML, and different for positive and negative feedback. TML was then regressed against fMRI data to identify the neural correlates
of mood during the rest period between the quiz and choice tasks. b Best choice model. Baseline activity (at the time of prospect display) in mood-related
regions (termed Neural Proxy for Mood, NPM) modulated the free parameters of the choice model. A first parameter was the variance of the subjective
distribution of forces produced (parameterized by σ, the width of the Gaussian), which served to calculate the subjective probability of success ps, as the
integral of probability distribution within the target window. This probability ps was integrated in the expected utility of the prospect, which had two other
free parameters—the weights of potential gain and loss, kg and kl. Acceptance probability was calculated as a sigmoid function (softmax) of expected
utility, with a last parameter kt that accounted for a linear drift with time
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NPM, but restricted to trials for which acceptance probability (as computed by the best choice model without modulation of free parameters by neural
activity) was between 1/6 and 5/6. Here the effect of baseline activity in mood-related regions was of a similar size as the effects of task factors. Error bars
represent inter-subject s.e.m.

Trial (in a session)

M
oo

d
ra

tin
g

(z
-s

co
re

d)

0.5

0

–0.5

0.25

71 17 26 32

–0.25

Positive bias
Negative bias

a

Participant

Δ-
M

od
el

ev
id

en
ce

40

0

80

120

b

M
od

el
 fi

t (
m

ed
ia

n 
su

bj
ec

t)

TML

Mood rating
Interpolated

c

40 80 120 160 200

Trial (across sessions)

Fig. 4 Mood fluctuations. a Variations in mood rating during sessions with positive (green) vs. negative (red) bias, across trials. Bias here means more or
less difficult questions, and more or less correct feedback. Note that the seven first and seven last questions of a session (grey windows) were not biased
(difficulty was medium). Lines represent means; error bars represent inter-subject s.e.m. The other panels show how well the computational model
captured fluctuations in mood level. b Individual differences in model evidence (variational Bayesian approximation to marginal likelihood) between the
best mood model and the control model (in which only time was taken into account). Participants were ranked from left to right in ascending order of
model evidence. Blue arrow indicates the subject with median model evidence, plotted in the next panel. c Individual example of mood fluctuations across
trials. Blue circles are mood ratings (measured or interpolated) and black line is theoretical mood level (TML). See Supplementary Fig. 1 for other individual
examples

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03774-z ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1708 | DOI: 10.1038/s41467-018-03774-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


onsets, as well as prospect onsets with its expected utility (gen-
erated by the best choice model) as a parametric modulator.

At the whole-brain level (cluster-generating threshold p <
0.001, cluster-level threshold p < 0.05 family-wise error cor-
rected), we found positive correlation with TML in a network
encompassing visual cortex, left inferior parietal lobule, posterior
cingulate cortex and vmPFC, and negative correlation in the
dorsomedial prefrontal cortex (dmPFC) and left frontal inferior
gyrus (Fig. 5a, Supplementary Table 1, see also Supplementary
Fig. 2 for response to feedback). Two of these regions
corresponded to our a priori regions of interest (ROI): vmPFC
and dmPFC (which overlaps with a region that has been labeled
as dorsal ACC in other studies). In addition, when looking into
ROI defined from the literature, we observed a significant
negative correlation with TML in bilateral aIns (both p < 0.01),
and a marginally significant positive correlation with TML in
bilateral vS (both p < 0.06). As the linear interpolation applied to
mood ratings could affect model parameters, we checked that
similar neural correlates are obtained when regressing TML
obtained with a mood model estimated on actual ratings only
(without interpolated ratings).

Computational impact of mood-related brain activity. Before
modeling, we identified which of our a priori ROI had a sig-
nificant impact on choice. We extracted baseline activity (at the
time of prospect onset) on a trial-by-trial basis in each ROI and
included these four regressors in a unique model meant to explain
the residual error of the best choice model fit. Activity was
averaged across left and right hemispheres for bilateral ROI (aIns
and vS), and orthogonalized with respect to whole-brain mean
activity for all four ROI. This orthogonalization was performed to
ensure that any effect could not be explained by unspecific fluc-
tuations in the blood-oxygen-level dependent (BOLD) signal. At
the group level, we found a significant association for the vmPFC
(t(22)= 2.5, p= 0.021) and aIns (t(22)=−2.7, p= 0.012), but
not for vS and dmPFC (both p > 0.1, Fig. 5b). This means that not
only baseline activity in vmPFC and aIns had opposite influence
on upcoming choice, but also these influences were not fully
redundant. Finally, we regressed polynomial expansions of TML
against vmPFC and aIns activity, to examine the possibility of
non-linear links. We found no significant association beyond the
first-order (linear) regressor (Supplementary Fig. 3). We also
checked that the regression slopes estimated above and below
median TML were not different (both p > 0.1), as would be pre-
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dicted if the vmPFC was only reflective positive mood, and the
aIns negative mood level.

To assess whether these two regions would also represent
separate components of mood, we entered them in a same
regression model meant to explain TML. In order to obtain the
time course of mood expression in the two ROI, we performed
this regression for each time point around prospect display, using
FIR models to extract time-series of brain activity. In order to rule
out effects of no interest (e.g., time), TML was orthogonalized
with respect to trial number, as well as the two neural regressors,
which were also orthogonalized to mean brain activity. Regres-
sion coefficients obtained for the eight scans preceding prospect
onset were then entered in a mixed-effect model with intercept as
fixed effect and subject-wise random effects of both intercept and
time point. The fixed intercept regressor was a significant
predictor of TML for both vmPFC and aIns activity, with
opposite signs (βvmPFC= 0.098; aIns=−0.083, both p < .001;
Fig. 5c, and Supplementary Fig. 3). Moreover, in order to ensure
that TML was expressed above and beyond the variance induced
by the last feedback, we performed the same analysis after
orthogonalizing TML and the two regressors with respect to last
feedback (−1 or +1 for TML, feedback-evoked response for
vmPFC and aIns activity). Both regions were still independent
predictors of TML (βvmPFC= 0.043; aIns=−0.032, both p <
0.01; Fig. 5c).

Thus, fMRI data analyses showed that vmPFC and aIns pre-
choice activity reflect separate components of mood and have
independent effects on subsequent choice. The next step was to
specify the computational mechanism by which pre-choice
activity could modulate decision making. Previous analyses
offered a way to translate brain activity into mood level at the
time of prospect display, using the coefficients obtained when
regressing TML against vmPFC and aIns activity. We applied this
linear model to baseline activity in order to generate a neural
proxy for mood (NPM), as follows:

NPM ¼ βvmPFC � baselineðvmPFCÞ þ βaIns � baselineðaInsÞ

As a sanity check, we verified that NPM was still predictive of
choices (t(22)= 2.9, p= 0.009, Fig. 3). When all choice data were
included in the regression, the effect of mood looked quite small
(~4% between lowest and highest mood, Fig. 3a) compared to the
other factors. However, when restricting the data set to trials in
which choices were not too strongly determined by task factors
(i.e., trials for which acceptance probability, as computed by the
best choice model, was between 1/6 and 5/6), the effect of mood
effect was much higher (~15%) and comparable to the other
dimensions (Fig. 3c).

In order to specify the mechanism by which mood could
interfere with decision-making, we allowed NPM to modulate the
free parameters of the best choice model, focusing on how task
factors (gain, loss and target size) were integrated (modulation of
kg, kl, and σ). Modulated free parameters were computed as
follows:

k0gðtÞ ¼ kg � ð1þ kmg �NPMðtÞÞ

where kmg (respectively kml and kmσ) is the weight that NPM had
on the gain prospect parameter (respectively on loss prospect
parameter and subjective variability of force production).

We also allowed NPM to bias expected utility in an additive
way, independent from task factors:

U 0
acceptðtÞ ¼ UacceptðtÞ þ km0 �NPMðtÞ

We started with a Bayesian comparison between the 16
resulting models (each of the four possible modulations—kmg,
kml, kmσ, and km0—could be included or not). No best model
emerged but family-wise analyses revealed that modulation of kg
and kl were both plausible (xp= 0.65 and xp= 1), whereas
modulation of kmσ and additive modulation were both implau-
sible (both xp= 0). Moreover, t-tests on posterior means across
participants indicated that modulation of kl (i.e., t-test on kml)
was significantly negative (t(22)=−2.5, p= 0.02), meaning that
loss weight decreased when NPM was higher. The t-test on kmg

was numerically positive but not significant, yet this was likely
due to an outlier subject (−3.3 SD to the mean), since a non-
parametric test (Wilcoxon) was significant (p= 0.048). This
would suggest that not only participants tend to neglect potential
losses when their mood is higher, but they tend to overweight
potential gains. We next intended to decompose these two effects
of NPM and assess whether they could be assigned to our two
ROI.

For each ROI, we compared choice models in which baseline
activity could modulate kg, kl or both. For vmPFC the best model
was a specific modulation of kg (xp= 0.96), whereas for aIns the
best model was a specific modulation of kl (xp= 1). Furthermore,
we performed t-tests on posterior parameters of the model that
included modulation of both kg and kl. We found that kg was
significantly enhanced by vmPFC baseline (t(22)= 2.7, p= 0.01),
whereas kl was significantly enhanced by aIns baseline (t(22)=
2.2, p= 0.04). The other possible links (kl with vmPFC and kg
with aIns) were negative but failed to reach significance (Fig. 5d).

Finally, we verified that the two critical effects of baseline
activity we identified (modulation of kg by vmPFC activity and
modulation of kl by aIns activity) mediated most of NPM effect
on choices. When using the best choice model without brain
activity, regression of residual error (part of choice unexplained
by task factors) with NPM was highly significant (t(22)= 2.9, p=
0.009), as already described. When including both vmPFC effect
on kg and aIns effect on kl in the choice model, the regression
with NPM was only marginally significant (p= 0.06), meaning
that residual error was roughly flat (Fig. 3b). Moreover, a direct
comparison of slopes was highly significant (t(22)= 3.3, p=
0.004), showing that vmPFC and aIns baseline activities mediated
most of NPM effect on choices.

Discussion
In this paper, we used a computational approach to demonstrate
that mood fluctuations induced by irrelevant positive and nega-
tive feedback were expressed in the baseline activity of two critical
regions, vmPFC and aIns, which in turn biased how gain and loss
prospects were weighted when making a decision. More specifi-
cally, we found that at choice onset, high vmPFC baseline activity
promoted risk taking through overweighting of potential gains,
while high aIns baseline activity tempered risk taking by over-
weighting potential losses. In the following, we discuss succes-
sively how mood fluctuations arise from feedback, how they are
represented in baseline brain activity, and how baseline brain
activity impacts the weighting of prospect dimensions.

Mood was manipulated here through the feedback that parti-
cipants received in a quiz task. Feedback is arguably a key factor
of mood fluctuations but it could be seen as impacting confidence
rather than mood, which is also susceptible to external factors
(independent from the person’s behavior), such as having nice vs.
bad weather, or watching a happy vs. sad movie. Yet we found
that the history of feedback affected what participants reported as
their mood level, and not their confidence level. The way feedback
was integrated into our winning computational model is close to
the suggestion of Rutledge and colleagues14, with a leaky
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accumulation across trials (sum weighted by exponential decay).
Critically, the influence of feedback on mood was reciprocated,
feedback being more positively perceived when mood was better.
This corresponds to the common intuition, captured by Eldar and
Niv’s model15, that happy people have a rosy outlook. The main
difference was that in their model, mood followed prediction
errors (outcome minus expectation), rather than just feedback.
This discrepancy is likely to result from participants having no
precise expectation in our quiz task (contrary to their bandit
tasks), or from us having no precise estimate of participants’
expectations. The best proxy that we could find for expectation
was mean performance over subjects (correct response rate),
which was probably too much of an approximation for
prediction-error models to win the comparison. Another differ-
ence was that the impact of positive and negative feedback was
asymmetrical in our model. This is reminiscent of the asymme-
trical effect of dopaminergic medication on reward and punish-
ment outcomes37–39, which may suggest a role for dopamine in
mediating the effects of feedback on mood.

Positive and negative feedback had quite a long-lasting effect
on mood ratings: discount factor was 0.77 on average, meaning
that a feedback received five trials in the past had an impact
corresponding to 35% of the most recent feedback. This was also
the case at the neural level: vmPFC and aIns baseline activities
reflected TML above and beyond the last feedback, and therefore
could not be interpreted as evoked responses. Yet we must
acknowledge that as mood was only sampled every three trials, we
had to interpolate ratings in order to get sufficient statistical
power for model comparison. This linear interpolation may have
influenced the dynamics of mood fluctuations captured by our
model, so our estimate of the discount factor must be taken with
caution. In any case, the timescale of mood fluctuations in our
study was around the minute, which is rather short compared to
spontaneous affective fluctuations, whose timescales range from
hours to days40,41. This may question the validity of our com-
putational model for capturing ecological mood fluctuations. An
answer to that critique is the demonstration that a similar model
could apply to real-world incidental events, such as sport results
or weather forecasts, and generated a proxy for mood level that
improved prediction of gambling behavior in a very large data-
set4. Thus, our model could potentially account for mood fluc-
tuations that occur in everyday life over hours or days. Tracking
the neural correlates of these mood fluctuations in the general
population raises methodological issues but would be critical to
validate our findings that mood level is underpinned by an
integration of vmPFC and aIns activity.

Mood level was reflected positively in vmPFC and negatively in
aIns, in keeping with the general idea that these two regions are
parts of opponent brain systems23. As a key component of the
reward circuit, later described as the brain valuation sys-
tem24,27,28,42,43, vmPFC was found to signal more positive out-
comes with increased activity. By contrast, aIns activity was
reported to increase for more negative outcomes38,44,45, or for
higher costs such as delay, risk or effort46–50. This concept of
opponency (same variable represented with opposite signs) must
be distinguished from domain specificity, which would mean that
vmPFC would only respond to positive events, and aIns to
negative events22,23. Note however that vmPFC and aIns were not
mirroring each other: they carried somewhat independent
information since they were both explaining some variance in
mood level when included in the same regression model. This
raises the intriguing question that positive and negative aspects of
mood might be independent components, or in other words, that
mood could be better described with two dimensions instead of
one51. From a clinical point of view, it is commonly assumed that
the lack of positive affects and the excess of negative affects are

largely independent (they are indeed two independent criteria of
depression). However, we found no evidence for a simple divide
of positive vs. negative mood being represented in vmPFC vs.
aIns, since the relationship between mood level and brain activity
was roughly linear for both vmPFC and aIns activity, with no
apparent change of slope around median mood level. Yet this null
finding could come from a limitation of our design, as mood
ratings were assigned on a unidimensional scale (from bad mood
to good mood), which prevented us to test the presence of two
underlying dimensions and to dissociate their neural
representations.

Baseline activity in mood-related regions affected choice in a
specific manner, with vmPFC increasing the weight of potential
gains and aIns increasing the weight of potential losses. These
findings bridge two sorts of observations made previously: (1)
that enhancing mood promotes risk taking13 and (2) that pre-
existing activity can affect risky choice33. The mechanism we
suggest goes beyond a simple additive effect of high baseline
activity in risk-promoting regions, since it affects the processing
of a specific information (potential gain or loss). We note how-
ever that the dissociation is not that clear-cut, as there were
trends for vmPFC down-regulating losses and aIns down-
regulating gains. This may again mitigate the claim that the
vmPFC and aIns are valence-specific regions, and rather supports
the notion that vmPFC and aIns are positively and negatively
linked to outcome value, respectively.

Importantly, the effect of mood observed and modeled here is a
direct impact on choice, and not an indirect impact through
biased learning, as in Eldar and Niv’s model15. Because mood-
inducing and mood-revealing tasks were independent in our
paradigm, the impact on choices may be seen as irrational. Yet in
an auto-correlated environment, the same effect would be adap-
tive16. For instance, when spring arrives, the appearance of fruits
in a given tree predicts the appearance of fruits in other trees.
According to our model, getting fruits would enhance mood, by
increasing vmPFC and decreasing aIns activity, which would
emphasize potential rewards in the calculation of EV, and
therefore favor exploratory behavior. This decision can be con-
sidered adaptive because exploration would be successful, as fruits
are now proliferating in the environment.

Although we believe that we have established interesting links
between neural and computational levels, we acknowledge that
we took a number of shortcuts. Notably, the transition from
feedback to mood was treated at the computational level, so we
bypassed the question of how feedback-induced brain responses
translate into a sustained change in mood level (or in tonic
vmPFC/aIns activity). Similarly, we bypassed the question of how
prospect-related brain responses carry over baseline activity so as
to modulate the integration of gains and losses and bias the
eventual choice. Unfortunately, we are at the limits of what can be
done with fMRI, for isolating successive stages of information
processing. Further experiments using electrophysiology techni-
ques would be required to further specify the neural mechanisms,
in particular for testing whether the neural populations that
respond to feedback are the same that distort prospect processing
and consequently decision making.

Nevertheless, even such a simple neuro-computational model,
where brain activity in key valuation regions is affected by feed-
back and modulates the relative weighting of gains and losses,
might give insight into mood disorders. We can only speculate
here, as there may be qualitative differences between normal and
pathological mood fluctuations52. Our model would predict low
vmPFC and high aIns tonic activity in depressed patients, who
would overweight potential losses relative to potential gains. This
bias would parallel, in value-based decision-making, the negative
bias in emotional processing that has been associated with
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depression53. Surprisingly, the behavior of depressed patients in
choices involving gains and losses has never been examined, to
our knowledge. However, there are hints in the literature that our
neural predictions may be correct, even if the neural correlates of
mood disorders are still debated54–60. Strikingly, vmPFC de-
activation has been observed during induced sadness in both
remitted depressed and bipolar patients61,62. Conversely, aIns
hyper-activation, in response to negative stimuli, was observed in
depressed patients compared to healthy controls57,59,63. We note
however that meta-analyses of basal metabolism in depression
failed to show reduced levels in the vmPFC, and pointed to even
enhanced level in a neighboring subgenual region58. Regard-
ing aIns, reduced gray matter volume64,65 and low basal meta-
bolism58,60 have been associated to depression. Therefore, the
question remains open of whether the putative changes in vmPFC
and aIns baseline activities could explain the decision to restrict
behavior to a core (and safe) minimum, and in particular the
reduction of social (and risky) interactions.

Methods
Subjects. The study was approved by the Ethics Committee for Biomedical
Research (‘Comité de Protection des Personnes’) of the Pitié-Salpêtrière Hospital.
Participants were recruited via the Relais d’Information en Sciences Cognitives
(RISC) website and screened using an initial telephone interview followed by a
personal interview for exclusion criteria: age below 18 or above 39, regular use of
drugs or medications, history of psychiatric or neurological disorders, plus (if
relevant) contraindications to MRI scanning: pregnancy, claustrophobia, metallic
implants. Participants were assessed using personality scales and questionnaires
(see Supplementary Methods). All participants gave informed consent prior to
partaking in the study. A total of 64 (n= 15, 23 and 26 participants in experiment
1, 2 and 3, respectively) healthy, French native-speaker, right-handed volunteers
(30 males), aged 18–35 years (mean 23.2 years, s.d. 3.5 years) were recruited. Three
subjects were excluded from experiment 3: one because he fell asleep during the
experiment and two because of technical problem during acquisition.

Behavioral tasks. Experiment 1 was composed of 128 trials, divided into eight
sessions. Each trial included two tasks: the quiz task and the choice task, separated
by a 10–18 s rest period.

Experiment 2 was composed of 256 trials, divided into eight sessions. Each trial
included three tasks: the quiz task, the rating task and the choice task. The quiz task
and the rating task were separated by a 4–8 s rest period, and the rating task lasted
for 5 s.

Experiment 3 was composed of 128 trials, divided into four sessions. Each trial
included two tasks: the quiz task and the choice task, separated by a 9–13 s rest
period (same duration than between these two tasks in experiment 2).

Quiz task: During the quiz task, a question was displayed on screen for 3.5 s (see
example in Fig. 1). The question was randomly selected from a set of 256 possible
questions that were adapted from the French version of the “trivial pursuit” game
(e.g., In Moby Dick, what is the name of the captain of the Pequod?). Then, four
possible answers were presented during up to 4.5 s. Participants were asked to
select the correct answer using up and down keys and to confirm their answer
using the control key (in the MRI scanner, button responses were used). A 1 s
feedback was finally given—either a smiling face with a bell sound or a grimacing
face with a buzzer sound. All key/button presses were done with the left hand, as
subjects hold the grip in the right hand. In experiment 3 (fMRI), the hand
squeezing the grip was counterbalanced across participants.

Unbeknownst to participants, we created episodes of high and low correct
response rate. First, questions were sorted by difficulty (assessed by mean accuracy
obtained from independent subjects in pilot experiments) and grouped so as to get
easy and hard episodes. In experiment 1, each session (32 trials) was assigned to a
difficulty level. In experiments 2 and 3, the 7 first and 7 last questions were always
of medium difficulty while the 18 middle questions could be either easier or harder.
Second, feedback was biased such that a wrong answer could lead to a positive
feedback. The proportion of biased feedback (from 0 to 50%) depended on the
difficulty of the session (the easier the questions, the more biased the feedback).
Note that in a pilot experiment, we ensured with post hoc debriefing that a vast
majority of participants remained unaware of this manipulation. The feedback was
always positive when the response was correct. The order of difficulty level and
proportion bias was fully randomized over sessions for each subject.

Rating task: During this task, which was only included in experiment 2,
participants were asked to rate either their confidence or their mood. Note that the
difficulty of the upcoming motor challenge was not announced at that time, so the
confidence rating was about whether they felt able to perform well whatever the
target size. Ratings were triggered by a question appearing on screen (either ‘how
do you feel?’ or how do you see your chance of success in the next trial?’. Please
note that for the confidence question, participants were explicitly asked to answer

about the next motor challenge, together with an analog 21-step scale (10 steps on
each side of the center, from low mood/very unconfident to high mood/very
confident). Participants had to move the cursor using left and right keys, and to
confirm their rating using the control key, within a 5-s delay. They knew that their
rating would be maintained on screen until the 5-s delay had elapsed, so they had
no reason to hurry up instead of thinking about their estimation. Mood and
confidence ratings were both completed in 11 out of 32 trials. In the ten remaining
trials, no question was asked but the rest period was increased by 5 s. Therefore, the
whole duration from the end of the quiz task to the beginning of the choice task
was kept between 9 and 13 s.

Choice task: The choice task began with the presentation of the motor
challenge, which lasted for 3–5 s. It was composed of a target window (whose size
determined the difficulty, see training section) around 25% of maximal force, and
two sets of coins. The upper set (regular coins) represented the potential gain (G,
range: 1–5€) in case of success, and the lower set (crossed coins) the potential loss
(range: 1–5€) in case of failure (see Fig. 1). Thus, each combination of the three
dimensions (target size, gain, and loss) represents a prospect. The sequence of trials
was pseudo-randomized such that (1) the three dimensions were orthogonal
between them and with the difficulty of quiz questions and (2) all sessions were
matched as closely as possible in the mean and variance of these three dimensions.

Then, participants had 1.5 s to make a choice (accept or decline the challenge)
using up and down keys (in the MRI scanner, button responses were used). If no
choice was made after the 1.5 s delay had elapsed, a penalty of 2€ was inflicted. Just
after choice, a picture of a squeezing hand appeared on screen and participants had
2.1 s to initiate their movement. The size of the target (i.e., the difficulty of the trial)
was the same whatever the choice. Thus, the choice only determined the amount of
money at stake: accepting the challenge meant winning gain prospect or losing loss
prospect, whereas declining meant playing for minimal stakes (winning 50 cents or
losing 50 cents). For the movement to be as ballistic as possible (like throwing a
dart), the participant had to squeeze and release the grip within 400 ms (from the
first to the last point above 5% of maximal force). Success or failure depended on
whether the peak force was within the target window. No feedback was given to
participants about the force or the payoff, to prevent learning effects.

Training: Before the real experiment, participants were familiarized with the
handgrip device. Online visual feedback of the force exerted was displayed as a fluid
level moving up and down within a thermometer depicted on the screen. The
maximal force was recorded for each individual three times in a row (only the
highest value was retained). Then three training sessions allowed the participant to
learn the required precision movement. These sessions included no quiz or choice.
At each trial participants had to produce a movement by squeezing the handgrip,
which was followed by a visual feedback showing the force profile over time (as
illustrated in Fig. 1). In the first session (10 trials), participants had unlimited time
to produce their movement, trying to hit a force target placed at 25% of their
maximal force. In the second session (30 trials), the real-time visual feedback was
suppressed and participants had to initiate their movement within 2.1 s, as in the
real experiment. In the third session (30 trials), participants could win up to 1 euro
every trial, depending on the distance of the peak force from the 25% force target.
This last training session was used to estimate motor precision for each individual
participant and hence to adjust the range of target size. In experiment 1, S range
was adjusted from [0.6–16] in most precise subjects to [1.6–37.6] in less precise
ones (expressed in % of participant maximal force). In experiment 2 and 3, S range
was somewhat narrower, from [1.5–15] to [3.2–32]. In experiment 3, another
precision-training session (similar to the third one) was performed in the scanner
to familiarize subjects with the MRI set-up, and to calibrate target sizes for the real
experiment. To complete the training, 10 full trials (with the quiz and choice tasks),
were finally performed. In order to avoid participants forgetting about the
movement, each session of the experiment began with five precision-training trials.

Behavioral data. Ratings and choices were fitted using computational models. As
mood and confidence were sampled every three trials, we linearly interpolated
ratings in order to get one data point per trial. In all analyses, mood and confidence
ratings were z-scored.

Mood model: We started with a published model14 that generates mood level
through integration of tasks events, as follows:

TML tð Þ ¼ ω0 þ ωq1

Xt

j¼1

γt�jEVquizðtÞ þ ωq2

Xt

j¼1

γt�jRPEquizðtÞ

þωp

Xt

j¼1

γt�jEVchoiceðtÞ þ ωt t

where TML is the theoretical mood level, t the trial index, whereas γ and all ω are
free parameters (ω0 is a constant and all other ω are weights on the different
components; γ, with 0 ≤ γ ≤ 1, is a forgetting factor that adjusts the influence of
recent events relative to older ones). For the quiz task, EV was calculated using the
mean accuracy across participants (EV= 2 ∗ accuracy – 1) and RPE was defined as
the actual feedback (encoded as 1 when positive and −1 when negative) minus EV.
For the choice task, EV was defined as the utility of the chosen option generated by
the winning computational model. There was no RPE in this task as no feedback
was provided on motor precision.
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We explored several variants of this model, according to the following options:
(1) We included versions in which mood was based on the quiz task only, the

choice task only, or both tasks. As a sanity check, we also included a null model in
which no task had any influence on mood level, which was therefore reduced to a
linear function of trial index.

(2) We allowed an asymmetrical influence of positive and negative events on
mood, using a free parameter R (with R > 0) for positive feedback instead of 1.

(3) Following on the suggestion of Eldar and colleagues15, we also allowed
mood to influence the subjective perception of feedback, as follows:

FðtÞ ¼ Feedback tð Þ þ δ � TML t � 1ð Þ

where δ is a free parameter and TML(t−1) the TML carried from previous trial,
before updating based on the feedback received in the current trial. We assumed
that mood effect was additive in order to implement the notion of a ‘rosy outlook’
(a multiplicative effect would imply that a negative feedback is perceived as even
worst when one is in a good mood). The modified feedback F(t) was then used to
compute the prediction error:

RPEquizðtÞ ¼ FðtÞ � EVquizðtÞ

(4) Finally, we tested a simplified version of the model in which only feedback
(or its subjective perception F, but not EV and RPE taken separately) was taken
into account, with a single weight. Formally, this is equivalent to a model in which
a single weight ωf is used for RPE and EV (ωf= ωq1= ωq2), as EV is subtracted
from feedback in RPE.

All possible combinations of these options were tested, leading to a total of 18
different models. These models were then compared using Bayesian model
selection, in order to identify the best account for rating data.

Choice model: We started with a normative perspective, borrowed from
expected utility theory, where potential gains G and losses L are multiplied by
probability of success vs. failure. The probability of acceptance was then
determined by the difference in expected utility between the two options (accept vs.
decline), using a standard softmax function. However, we introduced free
parameters to allow some flexibility and potentially capture the effects of mood
fluctuations. Notably, we used distinct weights (kg and kl) for the gain and loss
components of the utility function:

UtilityðacceptÞ ¼ ps � kg � Gain� 1� psð Þ � kl � Loss

Note that Utility(decline) can be calculated using the same function where gain and
loss are replaced by a constant amount (0.5€).

The subjective probability of success ps was inferred from the target size. We
assumed that participants had a representation of their motor precision following a
Gaussian assumption, meaning that the subjective distribution of their peak forces
could be defined by its mean—the required 25% of their maximal force—and its
width (i.e., standard deviation) captured by a free parameter σ. Thus, the
probability of success was the integral of this Gaussian bounded by the target
window:

ps ¼ 1

σ
ffiffiffiffiffi
2π

p
Z 0:25þSize=2

0:25�Size=2
e
�ðx�0:25Þ2

2σ2 dx

We also added in the softmax function a constant, in order to capture a possible
bias, and a linear function of time on task (trial index t), in order to capture fatigue
effects:

p accept; tð Þ ¼ 1

1þ e�ðUtilityðacceptÞ�UtilityðdeclineÞþkt�tþk0Þ

We tried several variants of this model, with (1) a simplified version in which only
Utility(accept) was included in the softmax function, Utility(decline) being
considered constant across trials,

(2) a more complex version including curvatures for subjective gain and loss, as
in prospect theory66. In this last variant, the expected utility of acceptance was,
therefore:

UtilityðacceptÞ ¼ ps � kg � Gaincg � 1� psð Þ � kl � Losscl

where cg and cl were free parameters (with 0 ≤ c ≤ 1).
As the two variants (removing Utility(decline) and introducing curvatures)

could be combined, we had four pseudo-normative models. These models were
compared to purely descriptive regression models in which expected utility was
defined by a linear combination of gain, loss, and target size with all main effects
and interactions, the different weights representing free parameters. As each
regressor (three main effects, three double interactions, and one triple interaction)
could be included or not, we tested 27= 128 different descriptive models.
Acceptance probability was then computed for these descriptive models using the
same softmax function as for normative models (without Utility(decline)). Thus,
the entire model space included 132 models (128 descriptive and 4 normative).

Model comparison: All models were inverted using a variational Bayes
approach under the Laplace approximation67–69, implemented in homemade

Matlab toolbox (available at http://mbb-team.github.io/VBA-toolbox/). This
algorithm not only inverts nonlinear models but also estimates their evidence,
which represents a trade-off between accuracy (goodness of fit) and complexity
(degrees of freedom)70. The log-evidences, estimated for each participant and
model, were submitted to a group-level random-effect analysis69. This analysis was
used to generate exceedance probability, which measures the plausibility that a
given model (or model family) is more frequently implemented by participants that
any other model (or model family) in the comparison set. The significance of fitted
parameters (means of posterior distributions) was tested across participants using
one-sample two-tailed t-tests or non-parametric test.

fMRI data. Multiband T2∗-weighted echo planar images (EPIs) were acquired with
BOLD contrast on a 3.0 Tesla magnetic resonance scanner. To cover the whole
brain with good temporal resolution, we used the following parameters: TR= 1.02
s, 45 slices, 2.5 mm slice thickness, 0.5 mm interslice gap. T1-weighted structural
images were also acquired, coregistered with the mean EPI, segmented and nor-
malized to a standard T1 template to allow group level anatomical localization. All
data processing and analysis was done using statistical parametric mapping soft-
ware SPM8 (Wellcome Trust center for NeuroImaging, London, UK) implemented
in Matlab. Preprocessing consisted of spatial realignment, normalization using the
same transformation as structural images, and spatial smoothing using a Gaussian
kernel with a full-width at half-maximum (FWHM) of 8 mm.

Preprocessed individual time series were regressed for each voxel against the
following GLMs. The first GLM included five separate categorical regressors for
events of the quiz task (at question, answers, and feedback onsets), and those of the
choice task (at prospect and question onsets). The prospect-onset regressor was
parametrically modulated by its expected utility, as computed in the best
computational model of choice. All these regressors were stick function (null
duration), except for the last one (question onset), which was a boxcar function.
Indeed, as choice and precision movement were separated by 1.5 s only, we model
both events by a single boxcar that extended from question onset to the end of
precision movement. Another boxcar regressor was included in the model to
capture the five precision-training trials that were performed at the beginning of
every session. Critically, a last boxcar regressor, encompassing the rest period
between quiz and choice tasks (from feedback to prospect onset), was included in
the model. It was modulated by the TML, as computed by the best computational
model of mood. All regressors were convolved with the canonical hemodynamic
response function of SPM8 (without derivative). To correct for motion artifacts,
participant-specific realignment parameters were modeled as covariates of no
interest. Regression coefficients were estimated at the individual level using the
restricted maximum-likelihood estimation. Linear contrasts of regression
coefficients were computed at the participant level and then taken to group-level
random effect analyses, using one-sample t-tests. Statistical maps were family-wise
corrected for multiple comparisons at the cluster level.

We ran additional GLM to extract brain activity from specific ROI. ROI were
spheres of 8-mm diameter, centered on coordinates independently obtained from a
published meta-analysis42 on the brain valuation system (MNI coordinates:
vmPFC: [2 46 −8]; aIns: [−36 20 −6/40 22 −6]; vS: [−12 12 −6/12 10 −6];
dmPFC: [4 22 44]). The second GLM was similar to the first one except that each
rest period (i.e., for each trial) was modeled as a unique, separate regressor. This
allowed us to extract brain activity during rest in the different ROI for each trial
and each participant. Finally, the third GLM included one event per trial, at the
time of prospect onset, convolved with FIR function. This allowed us to extract, for
each trial, the BOLD signal at the time of prospect, which is called baseline activity
in the results. A last GLM was implemented specifically for Supplementary Fig. 2,
in which feedback-onset and prospects-onset regressors were modulated by
feedback positivity (positive vs. negative feedback) and expected utility (as
computed in the best computational model of choice) respectively. In this last
model, the boxcar regressor encompassing the rest period was dropped out. Results
were visualized using xjView toolbox (http://www.alivelearn.net/xjview).

Code availability. All computer codes used during the current study are available
from the corresponding author on reasonable request.

Data availability. The datasets analyzed during the current study are available
from the corresponding author on reasonable request.
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